Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Immunol ; 15(5): 439-448, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24681565

RESUMEN

Molecular mechanisms that maintain lineage integrity of helper T cells are largely unknown. Here we show histone deacetylases 1 and 2 (HDAC1 and HDAC2) as crucial regulators of this process. Loss of HDAC1 and HDAC2 during late T cell development led to the appearance of major histocompatibility complex (MHC) class II-selected CD4(+) helper T cells that expressed CD8-lineage genes such as Cd8a and Cd8b1. HDAC1 and HDAC2-deficient T helper type 0 (TH0) and TH1 cells further upregulated CD8-lineage genes and acquired a CD8(+) effector T cell program in a manner dependent on Runx-CBFß complexes, whereas TH2 cells repressed features of the CD8(+) lineage independently of HDAC1 and HDAC2. These results demonstrate that HDAC1 and HDAC2 maintain integrity of the CD4 lineage by repressing Runx-CBFß complexes that otherwise induce a CD8(+) effector T cell-like program in CD4(+) T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Células TH1/inmunología , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Citocinas/metabolismo , Citotoxicidad Inmunológica/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica
2.
EMBO J ; 40(22): e108234, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34586646

RESUMEN

DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis-specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1-deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.


Asunto(s)
Metilación de ADN , Dermatitis/genética , Epidermis/fisiopatología , Nucleotidiltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Aberraciones Cromosómicas , Citosol/fisiología , ADN (Citosina-5-)-Metiltransferasa 1/genética , Dermatitis/inmunología , Dermatitis/patología , Humanos , Inmunidad Innata/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , Queratinocitos/inmunología , Queratinocitos/metabolismo , Queratinocitos/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Transgénicos , Nucleotidiltransferasas/genética
3.
Mol Cancer ; 23(1): 245, 2024 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-39482716

RESUMEN

BACKGROUND: Prostate cancer ranks as the second most frequently diagnosed cancer in men worldwide. Recent research highlights the crucial roles IL6ST-mediated signaling pathways play in the development and progression of various cancers, particularly through hyperactivated STAT3 signaling. However, the molecular programs mediated by IL6ST/STAT3 in prostate cancer are poorly understood. METHODS: To investigate the role of IL6ST signaling, we constitutively activated IL6ST signaling in the prostate epithelium of a Pten-deficient prostate cancer mouse model in vivo and examined IL6ST expression in large cohorts of prostate cancer patients. We complemented these data with in-depth transcriptomic and multiplex histopathological analyses. RESULTS: Genetic cell-autonomous activation of the IL6ST receptor in prostate epithelial cells triggers active STAT3 signaling and significantly reduces tumor growth in vivo. Mechanistically, genetic activation of IL6ST signaling mediates senescence via the STAT3/ARF/p53 axis and recruitment of cytotoxic T-cells, ultimately impeding tumor progression. In prostate cancer patients, high IL6ST mRNA expression levels correlate with better recurrence-free survival, increased senescence signals and a transition from an immune-cold to an immune-hot tumor. CONCLUSIONS: Our findings demonstrate a context-dependent role of IL6ST/STAT3 in carcinogenesis and a tumor-suppressive function in prostate cancer development by inducing senescence and immune cell attraction. We challenge the prevailing concept of blocking IL6ST/STAT3 signaling as a functional prostate cancer treatment and instead propose cell-autonomous IL6ST activation as a novel therapeutic strategy.


Asunto(s)
Senescencia Celular , Neoplasias de la Próstata , Factor de Transcripción STAT3 , Transducción de Señal , Microambiente Tumoral , Proteína p53 Supresora de Tumor , Masculino , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Animales , Ratones , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Modelos Animales de Enfermedad
4.
Mol Cancer ; 23(1): 114, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811984

RESUMEN

BACKGROUND: Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood. METHODS: We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment. RESULTS: Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1ß production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1ß and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1ß, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth. CONCLUSIONS: Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes.


Asunto(s)
Progresión de la Enfermedad , Fosfohidrolasa PTEN , Neoplasias de la Próstata , Microambiente Tumoral , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Animales , Ratones , Humanos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Microambiente Tumoral/inmunología , Fenotipo Secretor Asociado a la Senescencia , Proteínas Proto-Oncogénicas c-jun/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Perfilación de la Expresión Génica , Senescencia Celular/genética , Modelos Animales de Enfermedad
5.
Mol Cancer ; 22(1): 133, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573301

RESUMEN

Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metformina/farmacología , Recurrencia Local de Neoplasia , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
6.
Blood ; 138(23): 2347-2359, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34320169

RESUMEN

The transcription factors signal transducer and activator of transcription 5A (STAT5A) and STAT5B are critical in hematopoiesis and leukemia. They are widely believed to have redundant functions, but we describe a unique role for STAT5B in driving the self-renewal of hematopoietic and leukemic stem cells (HSCs/LSCs). We find STAT5B to be specifically activated in HSCs and LSCs, where it induces many genes associated with quiescence and self-renewal, including the surface marker CD9. Levels of CD9 represent a prognostic marker for patients with STAT5-driven leukemia, and our findings suggest that anti-CD9 antibodies may be useful in their treatment to target and eliminate LSCs. We show that it is vital to consider STAT5A and STAT5B as distinct entities in normal and malignant hematopoiesis.


Asunto(s)
Células Madre Hematopoyéticas/patología , Leucemia/patología , Células Madre Neoplásicas/patología , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Tetraspanina 29/metabolismo , Animales , Autorrenovación de las Células , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Células Tumorales Cultivadas
7.
Mol Cancer ; 21(1): 89, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354467

RESUMEN

BACKGROUND: Frequent truncation mutations of the histone lysine N-methyltransferase KMT2C have been detected by whole exome sequencing studies in various cancers, including malignancies of the prostate. However, the biological consequences of these alterations in prostate cancer have not yet been elucidated. METHODS: To investigate the functional effects of these mutations, we deleted the C-terminal catalytic core motif of Kmt2c specifically in mouse prostate epithelium. We analysed the effect of Kmt2c SET domain deletion in a Pten-deficient PCa mouse model in vivo and of truncation mutations of KMT2C in a large number of prostate cancer patients. RESULTS: We show here for the first time that impaired KMT2C methyltransferase activity drives proliferation and PIN formation and, when combined with loss of the tumour suppressor PTEN, triggers loss of senescence, metastatic dissemination and dramatically reduces life expectancy. In Kmt2c-mutated tumours we show enrichment of proliferative MYC gene signatures and loss of expression of the cell cycle repressor p16INK4A. In addition, we observe a striking reduction in disease-free survival of patients with KMT2C-mutated prostate cancer. CONCLUSIONS: We identified truncating events of KMT2C as drivers of proliferation and PIN formation. Loss of PTEN and KMT2C in prostate cancer results in loss of senescence, metastatic dissemination and reduced life expectancy. Our data demonstrate the prognostic significance of KMT2C mutation status in prostate cancer patients. Inhibition of the MYC signalling axis may be a viable treatment option for patients with KMT2C truncations and therefore poor prognosis.


Asunto(s)
Metiltransferasas , Neoplasias de la Próstata , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN/fisiología , Humanos , Masculino , Metiltransferasas/genética , Ratones , Mutación , Neoplasias de la Próstata/metabolismo , Secuenciación del Exoma
8.
Mol Syst Biol ; 16(4): e9247, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32323921

RESUMEN

Prostate cancer (PCa) has a broad spectrum of clinical behavior; hence, biomarkers are urgently needed for risk stratification. Here, we aim to find potential biomarkers for risk stratification, by utilizing a gene co-expression network of transcriptomics data in addition to laser-microdissected proteomics from human and murine prostate FFPE samples. We show up-regulation of oxidative phosphorylation (OXPHOS) in PCa on the transcriptomic level and up-regulation of the TCA cycle/OXPHOS on the proteomic level, which is inversely correlated to STAT3 expression. We hereby identify gene expression of pyruvate dehydrogenase kinase 4 (PDK4), a key regulator of the TCA cycle, as a promising independent prognostic marker in PCa. PDK4 predicts disease recurrence independent of diagnostic risk factors such as grading, staging, and PSA level. Therefore, low PDK4 is a promising marker for PCa with dismal prognosis.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Recurrencia Local de Neoplasia/genética , Neoplasias Experimentales/patología , Neoplasias de la Próstata/genética , Proteómica/métodos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Factor de Transcripción STAT3/genética , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Captura por Microdisección con Láser , Masculino , Ratones , Clasificación del Tumor , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Fosforilación Oxidativa , Pronóstico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Factor de Transcripción STAT3/metabolismo , Biología de Sistemas , Adulto Joven
9.
Blood ; 133(15): 1677-1690, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635286

RESUMEN

Over 80% of patients with myeloproliferative neoplasms (MPNs) harbor the acquired somatic JAK2 V617F mutation. JAK inhibition is not curative and fails to induce a persistent response in most patients, illustrating the need for the development of novel therapeutic approaches. We describe a critical role for CDK6 in MPN evolution. The absence of Cdk6 ameliorates clinical symptoms and prolongs survival. The CDK6 protein interferes with 3 hallmarks of disease: besides regulating malignant stem cell quiescence, it promotes nuclear factor κB (NF-κB) signaling and contributes to cytokine production while inhibiting apoptosis. The effects are not mirrored by palbociclib, showing that the functions of CDK6 in MPN pathogenesis are largely kinase independent. Our findings thus provide a rationale for targeting CDK6 in MPN.


Asunto(s)
Apoptosis , Quinasa 6 Dependiente de la Ciclina/farmacología , Janus Quinasa 2/genética , Mutación , Trastornos Mieloproliferativos/etiología , FN-kappa B/metabolismo , Humanos , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/mortalidad , Trastornos Mieloproliferativos/patología , Neoplasias , Transducción de Señal
10.
PLoS Genet ; 13(5): e1006793, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28498846

RESUMEN

Mutations in the gene encoding the methyl-CG binding protein MeCP2 cause several neurological disorders including Rett syndrome. The di-nucleotide methyl-CG (mCG) is the classical MeCP2 DNA recognition sequence, but additional methylated sequence targets have been reported. Here we show by in vitro and in vivo analyses that MeCP2 binding to non-CG methylated sites in brain is largely confined to the tri-nucleotide sequence mCAC. MeCP2 binding to chromosomal DNA in mouse brain is proportional to mCAC + mCG density and unexpectedly defines large genomic domains within which transcription is sensitive to MeCP2 occupancy. Our results suggest that MeCP2 integrates patterns of mCAC and mCG in the brain to restrain transcription of genes critical for neuronal function.


Asunto(s)
Encéfalo/metabolismo , Metilación de ADN , Repeticiones de Dinucleótido , Proteína 2 de Unión a Metil-CpG/metabolismo , Repeticiones de Trinucleótidos , Animales , Islas de CpG , Citosina/metabolismo , Epigénesis Genética , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Síndrome de Rett/genética
11.
Hum Mol Genet ; 25(3): 558-70, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26647311

RESUMEN

Rett syndrome is caused by mutations in the X-linked MECP2 gene, which encodes a chromosomal protein that binds to methylated DNA. Mouse models mirror the human disorder and therefore allow investigation of phenotypes at a molecular level. We describe an Mecp2 allelic series representing the three most common missense Rett syndrome (RTT) mutations, including first reports of Mecp2[R133C] and Mecp2[T158M] knock-in mice, in addition to Mecp2[R306C] mutant mice. Together these three alleles comprise ∼25% of all RTT mutations in humans, but they vary significantly in average severity. This spectrum is mimicked in the mouse models; R133C being least severe, T158M most severe and R306C of intermediate severity. Both R133C and T158M mutations cause compound phenotypes at the molecular level, combining compromised DNA binding with reduced stability, the destabilizing effect of T158M being more severe. Our findings contradict the hypothesis that the R133C mutation exclusively abolishes binding to hydroxymethylated DNA, as interactions with DNA containing methyl-CG, methyl-CA and hydroxymethyl-CA are all reduced in vivo. We find that MeCP2[T158M] is significantly less stable than MeCP2[R133C], which may account for the divergent clinical impact of the mutations. Overall, this allelic series recapitulates human RTT severity, reveals compound molecular aetiologies and provides a valuable resource in the search for personalized therapeutic interventions.


Asunto(s)
Alelos , Proteína 2 de Unión a Metil-CpG/genética , Mutación Missense , Síndrome de Rett/genética , Síndrome de Rett/patología , Sustitución de Aminoácidos , Animales , ADN/genética , ADN/metabolismo , Metilación de ADN , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Transgénicos , Modelos Moleculares , Fenotipo , Unión Proteica , Síndrome de Rett/metabolismo , Síndrome de Rett/mortalidad , Índice de Severidad de la Enfermedad , Transducción de Señal , Análisis de Supervivencia
12.
Histochem Cell Biol ; 150(3): 255-269, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29951776

RESUMEN

Aging is associated with profound changes in the epigenome, resulting in alterations of gene expression, epigenetic landscape, and genome architecture. Class I Histone deacetylases (HDACs), consisting of HDAC1, HDAC2, HDAC3, and HDAC8, play a major role in epigenetic regulation of chromatin structure and transcriptional control, and have been implicated as key players in the pathogenesis of age-dependent diseases and disorders affecting health and longevity. Here, we report the identification of class I Hdac orthologs and their detailed spatio-temporal expression profile in the short-lived fish Nothobranchius furzeri from the onset of embryogenesis until old age covering the entire lifespan of the organism. Database search of the recently annotated N. furzeri genomes retrieved four distinct genes: two copies of hdac1 and one copy of each hdac3 and hdac8. However, no hdac2 ortholog could be identified. Phylogenetic analysis grouped the individual killifish class I Hdacs within the well-defined terminal clades. We find that upon aging, Hdac1 is significantly down-regulated in muscle, liver, and brain, and this age-dependent down-regulation in brain clearly correlates with increased mRNA levels of the cyclin-dependent kinase inhibitor cdkn1a (p21). Furthermore, this apparent reduction of class I HDACs in transcript and protein levels is mirrored in the mouse brain, highlighting an evolutionarily conserved role of class I HDACs during normal development and in the aging process.


Asunto(s)
Envejecimiento , Peces , Histona Desacetilasa 1/genética , Animales , Perfilación de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Análisis de Supervivencia
13.
Development ; 141(3): 604-616, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24449838

RESUMEN

The histone deacetylases HDAC1 and HDAC2 are crucial regulators of chromatin structure and gene expression, thereby controlling important developmental processes. In the mouse brain, HDAC1 and HDAC2 exhibit different developmental stage- and lineage-specific expression patterns. To examine the individual contribution of these deacetylases during brain development, we deleted different combinations of Hdac1 and Hdac2 alleles in neural cells. Ablation of Hdac1 or Hdac2 by Nestin-Cre had no obvious consequences on brain development and architecture owing to compensation by the paralog. By contrast, combined deletion of Hdac1 and Hdac2 resulted in impaired chromatin structure, DNA damage, apoptosis and embryonic lethality. To dissect the individual roles of HDAC1 and HDAC2, we expressed single alleles of either Hdac1 or Hdac2 in the absence of the respective paralog in neural cells. The DNA-damage phenotype observed in double knockout brains was prevented by expression of a single allele of either Hdac1 or Hdac2. Strikingly, Hdac1(-/-)Hdac2(+/-) brains showed normal development and no obvious phenotype, whereas Hdac1(+/-)Hdac2(-/-) mice displayed impaired brain development and perinatal lethality. Hdac1(+/-)Hdac2(-/-) neural precursor cells showed reduced proliferation and premature differentiation mediated by overexpression of protein kinase C, delta, which is a direct target of HDAC2. Importantly, chemical inhibition or knockdown of protein kinase C delta was sufficient to rescue the phenotype of neural progenitor cells in vitro. Our data indicate that HDAC1 and HDAC2 have a common function in maintaining proper chromatin structures and show that HDAC2 has a unique role by controlling the fate of neural progenitors during normal brain development.


Asunto(s)
Alelos , Encéfalo/embriología , Encéfalo/enzimología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Homología de Secuencia de Aminoácido , Acetofenonas/farmacología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Benzopiranos/farmacología , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Co-Represoras/metabolismo , Daño del ADN/genética , Pérdida del Embrión/enzimología , Pérdida del Embrión/patología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
14.
EMBO J ; 29(23): 3992-4007, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20967026

RESUMEN

Histone deacetylase (HDAC) inhibitors induce cell cycle arrest, differentiation or apoptosis in tumour cells and are, therefore, promising anti-cancer reagents. However, the specific HDAC isoforms that mediate these effects are not yet identified. To explore the role of HDAC1 in tumourigenesis and tumour proliferation, we established an experimental teratoma model using wild-type and HDAC1-deficient embryonic stem cells. HDAC1-deficient teratomas showed no significant difference in size compared with wild-type teratomas. Surprisingly, loss of HDAC1 was not only linked to increased apoptosis, but also to significantly enhanced proliferation. Epithelial structures showed reduced differentiation as monitored by Oct3/4 expression and changed E-cadherin localization and displayed up-regulated expression of SNAIL1, a regulator of epithelial cell plasticity. Increased levels of the transcriptional regulator SNAIL1 are crucial for enhanced proliferation and reduced differentiation of HDAC1-deficient teratoma. Importantly, the analysis of human teratomas revealed a similar link between loss of HDAC1 and enhanced tumour malignancy. These findings reveal a novel role for HDAC1 in the control of tumour proliferation and identify HDAC1 as potential marker for benign teratomas.


Asunto(s)
Células Madre Embrionarias/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 1/genética , Teratoma/enzimología , Animales , Apoptosis , Cadherinas/genética , Carcinoma Embrionario/enzimología , Carcinoma Embrionario/genética , Carcinoma Embrionario/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/patología , Histona Desacetilasa 1/metabolismo , Humanos , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Fenotipo , Factores de Transcripción de la Familia Snail , Teratoma/genética , Teratoma/patología , Factores de Transcripción/genética
15.
Differentiation ; 85(1-2): 55-66, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23328540

RESUMEN

Epigenetic mechanisms serve as key regulatory elements during vertebrate embryogenesis. Histone acetylation levels, controlled by the opposing action of histone acetyl transferases (HATs) and histone deacetylases (HDACs), influence the accessibility of DNA to transcription factors and thereby dynamically regulate transcriptional programs. HDACs execute important functions in the control of proliferation, differentiation, and the establishment of cell identities during embryonic development. To investigate the global role of the HDAC family during neural tube development, we employed Trichostatin A (TSA) to locally block enzymatic HDAC activity in chick embryos in ovo. We found that TSA treatment induces neural tube defects at the level of the posterior neuropore, ranging from slight undulations to a complete failure of neural tube closure. This phenotype is accompanied by morphological changes in neuroepithelial cells and induction of apoptosis. As a molecular consequence of HDAC inhibition, we observed a timely deregulated cadherin switching in the dorsal neural tube, illustrated by induction of Cadherin 6B as well as reciprocal downregulation of N-Cadherin expression. Concomitantly, several neural crest specific markers, including Bmp4, Pax3, Sox9 and Sox10 are induced, causing a premature loss of epithelial characteristics. Our findings provide evidence that HDAC function is crucial to control the regulatory circuits operating during trunk neural crest development and neural tube closure.


Asunto(s)
Inhibidores de Histona Desacetilasas/toxicidad , Ácidos Hidroxámicos/toxicidad , Cresta Neural/efectos de los fármacos , Defectos del Tubo Neural/inducido químicamente , Animales , Apoptosis/efectos de los fármacos , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Embrión de Pollo , Cresta Neural/embriología , Tubo Neural/efectos de los fármacos , Tubo Neural/embriología , Células Neuroepiteliales/efectos de los fármacos , Células Neuroepiteliales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
PLoS Genet ; 6(4): e1000927, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20442873

RESUMEN

Large fractions of eukaryotic genomes contain repetitive sequences of which the vast majority is derived from transposable elements (TEs). In order to inactivate those potentially harmful elements, host organisms silence TEs via methylation of transposon DNA and packaging into chromatin associated with repressive histone marks. The contribution of individual histone modifications in this process is not completely resolved. Therefore, we aimed to define the role of reversible histone acetylation, a modification commonly associated with transcriptional activity, in transcriptional regulation of murine TEs. We surveyed histone acetylation patterns and expression levels of ten different murine TEs in mouse fibroblasts with altered histone acetylation levels, which was achieved via chemical HDAC inhibition with trichostatin A (TSA), or genetic inactivation of the major deacetylase HDAC1. We found that one LTR retrotransposon family encompassing virus-like 30S elements (VL30) showed significant histone H3 hyperacetylation and strong transcriptional activation in response to TSA treatment. Analysis of VL30 transcripts revealed that increased VL30 transcription is due to enhanced expression of a limited number of genomic elements, with one locus being particularly responsive to HDAC inhibition. Importantly, transcriptional induction of VL30 was entirely dependent on the activation of MAP kinase pathways, resulting in serine 10 phosphorylation at histone H3. Stimulation of MAP kinase cascades together with HDAC inhibition led to simultaneous phosphorylation and acetylation (phosphoacetylation) of histone H3 at the VL30 regulatory region. The presence of the phosphoacetylation mark at VL30 LTRs was linked with full transcriptional activation of the mobile element. Our data indicate that the activity of different TEs is controlled by distinct chromatin modifications. We show that activation of a specific mobile element is linked to a dual epigenetic mark and propose a model whereby phosphoacetylation of histone H3 is crucial for full transcriptional activation of VL30 elements.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica , Histonas/metabolismo , Retroelementos/genética , Acetilación , Animales , Cromatina , Embrión de Mamíferos/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Ratones , Fosforilación
17.
Cells Tissues Organs ; 195(5): 377-91, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21860211

RESUMEN

Aggregation of embryonic stem cells gives rise to embryoid bodies (EBs) which undergo developmental processes reminiscent of early eutherian embryonic development. Development of the three germ layers suggests that gastrulation takes place. In vivo, gastrulation is a highly ordered process but in EBs only few data support the hypothesis that self-organization of differentiating cells leads to morphology, reminiscent of the early gastrula. Here we demonstrate that a timely implantation-like process is a prerequisite for the breaking of the radial symmetry of suspended EBs. Attached to a surface, EBs develop a bilateral symmetry and presumptive mesodermal cells emerge between the center of the EBs and a horseshoe-shaped ridge of cells. The development of an epithelial sheet of cells on one side of the EBs allows us to define an 'anterior' and a 'posterior' end of the EBs. In the mesodermal area, first cardiomyocytes (CMCs) develop mainly next to this epithelial sheet of cells. Development of twice as many CMCs at the 'left' side of the EBs breaks the bilateral symmetry and suggests that cardiomyogenesis reflects a local or temporal asymmetry in EBs. The asymmetric appearance of CMCs but not the development of mesoderm can be disturbed by ectopic expression of the muscle-specific protein Desmin. Later, the bilateral morphology becomes blurred by an apparently chaotic differentiation of many cell types. The absence of comparable structures in aggregates of cardiovascular progenitor cells isolated from the heart demonstrates that the self-organization of cells during a gastrulation-like process is a unique feature of embryonic stem cells.


Asunto(s)
Cuerpos Embrioides/citología , Células Madre Embrionarias/citología , Miocitos Cardíacos/citología , Organogénesis/fisiología , Cuerpos Embrioides/metabolismo , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , Humanos , Microscopía Confocal , Miocitos Cardíacos/metabolismo
18.
Front Mol Biosci ; 8: 627143, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222326

RESUMEN

Erosion of the epigenetic DNA methylation landscape is a widely recognized hallmark of aging. Emerging advances in high throughput sequencing techniques, in particular DNA methylation data analysis, have resulted in the establishment of precise human and murine age prediction tools. In vertebrates, methylation of cytosine at the C5 position of CpG dinucleotides is executed by DNA methyltransferases (DNMTs) whereas the process of enzymatic demethylation is highly dependent on the activity of the ten-eleven translocation methylcytosine dioxygenase (TET) family of enzymes. Here, we report the identification of the key players constituting the DNA methylation machinery in the short-lived teleost aging model Nothobranchius furzeri. We present a comprehensive spatio-temporal expression profile of the methylation-associated enzymes from embryogenesis into late adulthood, thereby covering the complete killifish life cycle. Data mining of the N. furzeri genome produced five dnmt gene family orthologues corresponding to the mammalian DNMTs (DNMT1, 2, 3A, and 3B). Comparable to other teleost species, N. furzeri harbors multiple genomic copies of the de novo DNA methylation subfamily. A related search for the DNMT1 recruitment factor UHRF1 and TET family members resulted in the identification of N. furzeri uhrf1, tet1, tet2, and tet3. Phylogenetic analysis revealed high cross-species similarity on the amino acid level of all individual dnmts, tets, and uhrf1, emphasizing a high degree of functional conservation. During early killifish development all analyzed dnmts and tets showed a similar expression profile characterized by a strong increase in transcript levels after fertilization, peaking either at embryonic day 6 or at the black eye stage of embryonic development. In adult N. furzeri, DNA methylation regulating enzymes showed a ubiquitous tissue distribution. Specifically, we observed an age-dependent downregulation of dnmts, and to some extent uhrf1, which correlated with a significant decrease in global DNA methylation levels in the aging killifish liver and muscle. The age-dependent DNA methylation profile and spatio-temporal expression characteristics of its enzymatic machinery reported here may serve as an essential platform for the identification of an epigenetic aging clock in the new vertebrate model system N. furzeri.

19.
Life Sci Alliance ; 4(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33310759

RESUMEN

Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Epigénesis Genética , Linfoma/etiología , Linfoma/metabolismo , Proteínas Tirosina Quinasas/genética , Animales , Biomarcadores de Tumor , Biología Computacional/métodos , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Epigenómica , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Inmunohistoquímica , Inmunofenotipificación , Linfoma/tratamiento farmacológico , Linfoma/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Leukemia ; 33(7): 1583-1597, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30679796

RESUMEN

Deregulation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway is found in cancer with STAT5A/B controlling leukemic cell survival and disease progression. As mutations in STAT5B, but not STAT5A, have been frequently described in hematopoietic tumors, we used BCR/ABL as model systems to investigate the contribution of STAT5A or STAT5B for leukemogenesis. The absence of STAT5A decreased cell survival and colony formation. Even more drastic effects were observed in the absence of STAT5B. STAT5B-deficient cells formed BCR/ABL+ colonies or stable cell lines at low frequency. The rarely evolving Stat5b-/- cell lines expressed enhanced levels of BCR/ABL oncoprotein compared to wild-type cells. In line, Stat5b-/- leukemic cells induced leukemia with a significantly prolonged disease onset, whereas Stat5a-/- cells rapidly caused a fatal disease superimposable to wild-type cells. RNA-sequencing (RNA-seq) profiling revealed a marked enhancement of interferon (IFN)-α and IFN-γ signatures in Stat5b-/- cells. Inhibition of IFN responses rescued BCR/ABL+ colony formation of Stat5b-/--deficient cells. A downregulated IFN response was also observed in patients suffering from leukemia carrying STAT5B mutations. Our data define STAT5B as major STAT5 isoform driving BCR/ABL+ leukemia. STAT5B enables transformation by suppressing IFN-α/γ, thereby facilitating leukemogenesis. Our findings might help explain the high frequency of STAT5B mutations in hematopoietic tumors.


Asunto(s)
Transformación Celular Neoplásica/patología , Proteínas de Fusión bcr-abl/metabolismo , Leucemia Linfocítica Granular Grande/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Mutación , Factor de Transcripción STAT5/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Antineoplásicos/farmacología , Proliferación Celular , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Proteínas de Fusión bcr-abl/genética , Humanos , Interferones/farmacología , Leucemia Linfocítica Granular Grande/tratamiento farmacológico , Leucemia Linfocítica Granular Grande/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Factor de Transcripción STAT5/genética , Tasa de Supervivencia , Proteínas Supresoras de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA