Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 92(21): 14432-14443, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32970419

RESUMEN

Degradation of the implant surface and particle release/formation as an inflammation catalyst mechanism is an emerging concept in dental medicine that may help explain the pathogenesis of peri-implantitis. The aim of the present study was a synchrotron-based characterization of micro- and nanosized implant-related particles in inflamed human tissues around titanium and ceramic dental implants that exhibited signs of peri-implantitis. Size, distribution, and chemical speciation of the exogenous micro- and nanosized particle content were evaluated using synchrotron µ-X-ray fluorescence spectroscopy (XRF), nano-XRF, and µ-X-ray absorption near-edge structure (XANES). Titanium particles, with variable speciation, were detected in all tissue sections associated with titanium implants. Ceramic particles were found in five out of eight tissue samples associated with ceramic implants. Particles ranged in size from micro- to nanoscale. The local density of both titanium and ceramic particles was calculated to be as high as ∼40 million particles/mm3. µ-XANES identified titanium in predominantly two different chemistries, including metallic and titanium dioxide (TiO2). The findings highlight the propensity for particle accumulation in the inflamed tissues around dental implants and will help in guiding toxicological studies to determine the biological significance of such exposures.


Asunto(s)
Cerámica/efectos adversos , Implantes Dentales/efectos adversos , Microesferas , Nanopartículas , Periimplantitis/inducido químicamente , Periimplantitis/metabolismo , Titanio/efectos adversos , Cerámica/química , Cerámica/metabolismo , Humanos , Tamaño de la Partícula , Titanio/química , Titanio/metabolismo
2.
Part Fibre Toxicol ; 16(1): 33, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31451117

RESUMEN

BACKGROUND: Allergic reactions to tattoos are amongst the most common side effects occurring with this permanent deposition of pigments into the dermal skin layer. The characterization of such pigments and their distribution has been investigated in recent decades. The health impact of tattoo equipment on the extensive number of people with inked skin has been the focus of neither research nor medical diagnostics. Although tattoo needles contain high amounts of sensitizing elements like nickel (Ni) and chromium (Cr), their influence on metal deposition in skin has never been investigated. RESULTS: Here, we report the deposition of nano- and micrometer sized tattoo needle wear particles in human skin that translocate to lymph nodes. Usually tattoo needles contain nickel (6-8%) and chromium (15-20%) both of which prompt a high rate of sensitization in the general population. As verified in pig skin, wear significantly increased upon tattooing with the suspected abrasive titanium dioxide white when compared to carbon black pigment. Additionally, scanning electron microscopy of the tattoo needle revealed a high wear after tattooing with ink containing titanium dioxide. The investigation of a skin biopsy obtained from a nickel sensitized patient with type IV allergy toward a tattoo showed both wear particles and iron pigments contaminated with nickel. CONCLUSION: Previously, the virtually inevitable nickel contamination of iron pigments was suspected to be responsible for nickel-driven tattoo allergies. The evidence from our study clearly points to an additional entry of nickel to both skin and lymph nodes originating from tattoo needle wear with an as yet to be assessed impact on tattoo allergy formation and systemic sensitization.


Asunto(s)
Cromo/farmacocinética , Colorantes/toxicidad , Hipersensibilidad/etiología , Ganglios Linfáticos/efectos de los fármacos , Níquel/farmacocinética , Piel/efectos de los fármacos , Tatuaje/efectos adversos , Animales , Colorantes/farmacocinética , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Técnicas In Vitro , Tinta , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Agujas , Tamaño de la Partícula , Piel/inmunología , Piel/metabolismo , Porcinos , Distribución Tisular , Titanio/farmacocinética , Titanio/toxicidad
3.
Acta Biomater ; 140: 350-363, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740856

RESUMEN

Polymer based composites are widely used for treatment, for example as biofilm resistant seals of root canal fillings. Such clinical use, however, fails more frequently than other dental composite restorations, due to stress-related misfits. The reason for this is that the biomaterials used are inserted as viscous masses that may bond to the substrate, yet shrinkage stresses arising during setting of the cross-linking polymer, work against durable adhesion. Here we combine phase contrast enhanced time-lapse radiography (radioscopy), digital image correlation (DIC) and submicrometer resolution phase-contrast enhanced microtomography (PCE-CT), to reveal the spatial and temporal dynamics of composite polymerization and strain evolution. Radioscopy of cavities located in the upper part of human root canals demonstrates how the composite post-gelation "densification" is dominated by viscous flow with quantifiable motion of both particles and entrapped voids. Thereafter, these composites enter a "stress-relaxation" stage and exhibit several structural adaptations, induced by residual shrinkage stresses. Consequently critical alterations to the final biomaterial geometry emerge: (i) entrapped bubbles expand; (ii) microscopic root filling pull-out occurs; (iii) the cavity walls deform inwards, and (iv) occasionally delamination ensues, propagating out from the root canal filling along buried restoration-substrate interfaces. Our findings shed new light on the interactions between confined spaces and biomedical composites that cross-link in situ, highlighting the crucial role of geometry in channeling residual stresses. They further provide new insights into the emergence of structural flaws, calling attention to the need to find new treatment options. STATEMENT OF SIGNIFICANCE: This work quantifies recurring spatial and temporal material redistribution in composites used clinically to fill internal spaces in teeth. This knowledge is important for both promoting biomaterial resistance against potentially pathologic biofilms and for improving structural capacity to endure years of mechanical function. Our study demonstrates the significant role of geometry and the need for improved control over stress raisers to develop better treatment protocols and new space filling materials. The use of high-brilliance X-rays for time-lapse imaging at submicrometer resolution provides dynamic information about the damaging effects of stress relaxation due to polymerization shrinkage.


Asunto(s)
Resinas Compuestas , Cavidad Pulpar , Resinas Compuestas/química , Cavidad Pulpar/diagnóstico por imagen , Restauración Dental Permanente , Humanos , Ensayo de Materiales , Polimerizacion , Imagen de Lapso de Tiempo
4.
Adv Sci (Weinh) ; 7(20): 2000412, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33101844

RESUMEN

Metallic implants are frequently used in medicine to support and replace degenerated tissues. Implant loosening due to particle exposure remains a major cause for revision arthroplasty. The exact role of metal debris in sterile peri-implant inflammation is controversial, as it remains unclear whether and how metals chemically alter and potentially accumulate behind an insulating peri-implant membrane, in the adjacent bone and bone marrow (BM). An intensively focused and bright synchrotron X-ray beam allows for spatially resolving the multi-elemental composition of peri-implant tissues from patients undergoing revision surgery. In peri-implant BM, particulate cobalt (Co) is exclusively co-localized with chromium (Cr), non-particulate Cr accumulates in the BM matrix. Particles consisting of Co and Cr contain less Co than bulk alloy, which indicates a pronounced dissolution capacity. Particulate titanium (Ti) is abundant in the BM and analyzed Ti nanoparticles predominantly consist of titanium dioxide in the anatase crystal phase. Co and Cr but not Ti integrate into peri-implant bone trabeculae. The characteristic of Cr to accumulate in the intertrabecular matrix and trabecular bone is reproducible in a human 3D in vitro model. This study illustrates the importance of updating the view on long-term consequences of biomaterial usage and reveals toxicokinetics within highly sensitive organs.

5.
Invest Radiol ; 54(10): 617-626, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31033673

RESUMEN

OBJECTIVES: The aim of this study was to determine in vivo if brain inflammation leads to increased gadolinium (Gd) retention in brain tissue after repeated applications of Gd-based contrast agents (GBCAs). MATERIALS AND METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in female SJL/J mice (n = 6). Experimental autoimmune encephalomyelitis and healthy control mice (n = 4) received 2.5 mmol/kg Gd-DTPA over 10 days (8 injections, cumulated dose of 20 mmol/kg), starting at day 14 post immunization when EAE mice reached the maximal clinical disability. In a group of mice, T1-weighted 2-dimensional RARE images were acquired before the first GBCA injection and 1 day after the last injection. Mice were killed either 1 day or 10 days after the last Gd application. From each single animal, a brain hemisphere was used for Gd detection using inductively coupled plasma mass spectrometry, whereas the other hemisphere was processed for histology and synchrotron x-ray fluorescence spectroscopy (SR-XRF) analysis. RESULTS: Gadolinium deposition in inflamed brains was mapped by SR-XRF 1 day after the last Gd-DTPA injections, although only mild signal hyperintensity was found on unenhanced T1-weighted images. In addition, using inductively coupled plasma mass spectrometry, we detected and quantified Gd in both healthy and EAE brains up to 10 days after the last injections. However, EAE mouse brains showed higher levels of Gd (mean ± SD, 5.3 ± 1.8 µg/g; range, 4.45-8.03 µg/g) with respect to healthy controls (mean ± SD, 2.4 ± 0.6 µg/g; range, 1.8-3.2 µg/g). By means of micro-SR-XRF, we identified submicrometric Gd hotspots in all investigated samples containing up to 5893 µg Gd/g tissue. Nano-SR-XRF further indicated that Gd small hotspots had an average size of ~160 nm diameter and were located in areas of high inflammatory activity. CONCLUSIONS: After repeated administrations of Gd-DTPA, ongoing inflammation may facilitate the retention of Gd in the brain tissue. Thus, neuroinflammation should be considered as a risk factor in the recommendation on use of linear GBCA-enhanced MRI.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Animales , Medios de Contraste/administración & dosificación , Femenino , Gadolinio DTPA/administración & dosificación , Masculino , Ratones , Modelos Animales , Espectrometría de Fluorescencia , Espectrofotometría Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA