Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Data Brief ; 17: 739-743, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29876431

RESUMEN

Atomistic rigid lattice Kinetic Monte Carlo (KMC) is an efficient method for simulating nano-objects and surfaces at timescales much longer than those accessible by molecular dynamics. A laborious and non-trivial part of constructing any KMC model is, however, to calculate all migration barriers that are needed to give the probabilities for any atom jump event to occur in the simulations. We have calculated three data sets of migration barriers for Cu self-diffusion with two different methods. The data sets were specifically calculated for rigid lattice KMC simulations of copper self-diffusion on arbitrarily rough surfaces, but can be used for KMC simulations of bulk diffusion as well.

2.
Data Brief ; 19: 564-569, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29900356

RESUMEN

Atomistic rigid lattice Kinetic Monte Carlo (KMC) is an efficient method for simulating nano-objects and surfaces at timescales much longer than those accessible by molecular dynamics. A laborious and non-trivial part of constructing any KMC model is, however, to calculate all migration barriers that are needed to give the probabilities for any atom jump event to occur in the simulations. We calculated three data sets of migration barriers for Fe self-diffusion: barriers of first nearest neighbour jumps, second nearest neighbours hop-on jumps on the Fe {100} surface and a set of barriers of the diagonal exchange processes for various cases of the local atomic environments within the 2nn coordination shell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA