Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Appl Toxicol ; 43(2): 272-286, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35978497

RESUMEN

This study focused on the impact in 3T3 fibroblasts of several types of empty and curcumin- and resveratrol-loaded solid lipid nanoparticles (SLN) on cell viability and lipid metabolism in relation to their lipid content and encapsulated drug. SLN, prepared by hot homogenization/ultrasonication, were characterized with respect to size, polydispersity index, and zeta potential. Compritol® 888 ATO at different concentrations (4%, 5%, and 6% wt/wt) was chosen as lipid matrix while Poloxamer 188 (from 2.2% to 3.3% wt/wt) and Transcutol (TRC; 2% or 4%) were added as nanoparticle excipients. Prepared SLN were able to encapsulate high drug amount (encapsulation efficiency percentage of about 97-99%). All empty SLN did not show cytotoxicity (by MTT assay, at 24 h of incubation) in 3T3 cells independently of the lipid and TRC amount, while a viability reduction in the range 5-11% and 12-27% was observed in 3T3 cells treated with curcumin-loaded and resveratrol-loaded SLN, respectively. SLN without TRC did not affect cell lipid metabolism, independently from the lipid content. Empty and loaded SLN formulated with 4% of Compritol and 4% of TRC significantly affected, after 24 h of incubation at the dose of 5 µl/ml, cell polar lipids (phospholipids and free cholesterol) and fatty acid profile, with respect to control cells. Loaded compounds significantly modulated the impact of the corresponding empty formulation on cell lipids. Therefore, the combined impact on lipid metabolism of SLN and loaded drug should be taken in consideration in the evaluation of the toxicity, potential application, and therapeutic effects of new formulations.


Asunto(s)
Curcumina , Nanopartículas , Ratones , Animales , Resveratrol , Lípidos/toxicidad , Nanopartículas/toxicidad , Fibroblastos , Tamaño de la Partícula , Portadores de Fármacos/toxicidad
2.
J Environ Manage ; 343: 118248, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37244101

RESUMEN

Multilayer Blue-Green Roofs are powerful nature-based solutions that can contribute to the creation of smart and resilient cities. These tools combine the retention capacity of traditional green roofs with the water storage of a rainwater harvesting tank. The additional storage layer enables to accumulate the rainwater percolating from the soil layer, that, if properly treated, can be reused for domestic purposes. Here, we explore the behavior of a Multilayer Blue-Green Roof prototype installed in Cagliari (Italy) in 2019, that have been equipped with a remotely controlled gate to regulate the storage capacity of the system. The gate installation allows to manage the Multilayer Blue-Green Roof in order to increase the flood mitigation capacity, minimizing the water stress for vegetation and limiting the roof load with adequate management practices. In this work, 10 rules for the management of the Multilayer Blue-Green Roof gate have been investigated and their performances in achieving different management goals (i.e., mitigating urban flood, increasing water storage and limiting roof load on the building) have been evaluated, with the aim to identify the most efficient approach to maximize the benefits of this nature based solution. An ecohydrological model have been calibrated based on field measurements carried out for 6 months. The model has been used to simulate the system performance in achieving the proposed goals, using as input nowdays and future rainfall and temperature time series. The analysis reveled the importance of the correct management of the gate, highthing how choosing and applying a specific management rule helps increasing the performance in reaching the desired goal.


Asunto(s)
Lluvia , Movimientos del Agua , Ciudades , Suelo , Inundaciones , Conservación de los Recursos Naturales
3.
Planta Med ; 83(5): 476-481, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27220078

RESUMEN

Resveratrol is a naturally occurring polyphenol with strong antioxidant and free radical scavenging properties, recently proposed as a therapeutic agent for skin diseases. In this study, we investigated the possibility of improving the dermal bioavailability of the poorly water-soluble drug resveratrol by nanocrystal technology. To this purpose, nanosuspensions were prepared by the wet media milling technique, using Poloxamer 188 or Tween 80 as stabilizers, and characterized by means of both solid state and morphological and dimensional studies. All analytical data demonstrated that neither a modification of the drug crystalline pattern nor the isomerization of the trans double bond were observed after the wet media milling particle size reduction process, which produced rounded and smooth nanocrystals with a mean diameter ranging between 0.2-0.3 µm. Resveratrol skin delivery from nanosuspension formulations was evaluated by the pig ear skin model via tape stripping. Results of the experiments showed that after application of nanosuspension formulations, higher amounts of resveratrol could penetrate the skin at deeper levels compared to drug coarse suspensions. The antioxidant activity of resveratrol in nanocrystals was assessed by the DPPH assay, which demonstrated that the size reduction process as well as the formulation compositions did not modify the drug antioxidant activity.


Asunto(s)
Antioxidantes/administración & dosificación , Sistemas de Liberación de Medicamentos , Nanopartículas , Estilbenos/administración & dosificación , Administración Cutánea , Animales , Disponibilidad Biológica , Técnicas In Vitro , Tamaño de la Partícula , Resveratrol , Absorción Cutánea , Porcinos
4.
Biomed Microdevices ; 18(4): 67, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27422107

RESUMEN

Needle-free liquid jet injectors are devices developed for the delivery of pharmaceutical solutions through the skin. In this paper, we investigated for the first time the ability of these devices to deliver intact lipid vesicles. Diclofenac sodium loaded phospholipid vesicles of two types, namely liposomes and transfersomes, were prepared and fully characterized. The lipid vesicles were delivered through a skin specimen using a jet injector and the collected samples were analyzed to assess vesicle structural integrity, drug retention and release kinetics after the injection. In this regard, data concerning size, size distribution, surface charge of vesicles and bilayer integrity and thickness, before and after the injections, were measured by dynamic light scattering experiments, cryo-electron microscopy, and X-ray scattering techniques. Finally, the effect of vesicle fast jet injection through the skin on drug release kinetics was checked by in vitro experiments. The retention of the morphological, physico-chemical, and technological features after injection, proved the integrity of vesicles after skin crossing as a high-speed liquid jet. The delivery of undamaged vesicular carriers beneath the skin is of utmost importance to create a controlled release drug depot in the hypoderm, which may be beneficial for several localized therapies. Overall results reported in this paper may broaden the range of application of liquid jet injectors to lipid vesicle based formulations thus combining beneficial performance of painless devices with those of liposomal drug delivery systems.


Asunto(s)
Inyecciones a Chorro/métodos , Fosfolípidos/administración & dosificación , Piel/efectos de los fármacos , Administración Cutánea , Diclofenaco/administración & dosificación , Sistemas de Liberación de Medicamentos , Estudios de Factibilidad , Liposomas/química , Agujas
5.
Biomater Sci ; 12(2): 387-401, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37997957

RESUMEN

Our paper describes the production and characterization of inhalable microparticles loaded with nanoparticles for the lung administration of rapamycin (Rapa). In detail, core-shell lipid/polymer hybrid nanoparticles loaded with Rapa (Rapa@Man-LPHNPs) were produced with mean size of about 128 nm and slightly negative ζ potential (-13.8 mV). A fluorescent graft polyaspartamide-poly(lactic-co-glycolic acid) copolymer (PHEA-g-RhB-g-PLGA) for use as the polymeric core was obtained by nanoprecipitation, while an appropriate mixture of DPPC and mannosylated phospholipid (DSPE-PEG2000-Man) was used to provide the macrophage-targeting lipid shell. The successful formation of Rapa@Man-LPHNPs was confirmed by TEM and DSC analyses. The loaded drug (4.3 wt% of the total weight) was slowly released from the polymeric core and protected from hydrolysis, with the amount of intact drug after 24 h of incubation in the medium being equal to 74 wt% (compared to 40% when the drug is freely incubated at the same concentration). To obtain a formulation administrable by inhalation, Rapa@Man-LPHNPs were entrapped inside PVA : LEU microparticles by using the nano into micro (NiM) strategy, specifically by spray drying (SD) in the presence of a pore-forming agent. In this way, NiM particles with geometric and theoretical aerodynamic diameters equal to 4.52 µm and 3.26 µm, respectively, were obtained. Furthermore, these particles showed optimal nebulization performance, having an FPF and an MMAD equal to 27.5% and 4.3 µm, respectively.


Asunto(s)
Nanopartículas , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Sirolimus , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Administración por Inhalación , Polímeros , Inflamación , Tamaño de la Partícula
6.
Ophthalmic Genet ; : 1-10, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38454848

RESUMEN

BACKGROUND: Disease-causing variants in the KCNV2 gene are associated with "cone dystrophy with supernormal rod responses," a rare autosomal recessive retinal dystrophy. There is no previous report of hypomorphic variants in the disease. MATERIAL AND METHODS: Medical history, genetic testing, ocular examination, high-resolution retinal imaging including adaptive optics scanning light ophthalmoscopy (AOSLO), and functional assessments. RESULTS: A 16-year-old male with mild cone-rod dystrophy presented with reduced central vision and photophobia. Genetic testing showed two variants in KCNV2, c.614_617dupAGCG (p.207AlafsTer166) and c.854T>G (p.Met285Arg), the latter which was previously considered benign. Electrophysiological assessment revealed the pathognomic electroretinogram waveforms associated with KCNV2-retinopathy. Optical coherence tomography showed discrete focal ellipsoid zone disruption, while fundus autofluorescence was normal. Non-waveguiding cones corresponding to areas of loss of photoreceptor integrity were visible on adaptive optics scanning light ophthalmoscopy. Retinal sensitivity and fixation were relatively preserved, with a demonstrable deterioration after 14 months of follow-up. CONCLUSIONS: We provide functional and structural evidence that the variant M285R is disease-causing if associated with a loss-of-function variant. To the best of our knowledge, this is the first hypomorphic allele reported in KCNV2.

7.
Int J Pharm ; 661: 124404, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38945464

RESUMEN

Vaccines based on protein antigens have numerous advantages over inactivated pathogens, including easier manufacturing and improved safety. However, purified antigens are weakly immunogenic, as they lack the spatial organization and the associated 'danger signals' of the pathogen. Formulating vaccines as nanoparticles enhances the recognition by antigen presenting cells, boosting the cell-mediated immune response. This study describes a nano-precipitation method to obtain stable protein nanoaggregates with uniform size distribution without using covalent cross-linkers. Nanoaggregates were formed via microfluidic mixing of ovalbumin (OVA) and lipids in the presence of high methanol concentrations. A purification protocol was set up to separate the nanoaggregates from OVA and liposomes, obtained as byproducts of the mixing. The nanoaggregates were characterized in terms of morphology, ζ-potential and protein content, and their interaction with immune cells was assessed in vitro. Antigen-specific T cell activation was over 6-fold higher for nanoaggregates compared to OVA, due in part to the enhanced uptake by immune cells. Lastly, a two-dose immunization with nanoaggregates in mice induced a significant increase in OVA-specific CD8+ T splenocytes compared to soluble OVA. Overall, this work presents for the first time the microfluidic production of lipid-stabilized protein nanoaggregates and provides a proof-of-concept of their potential for vaccination.


Asunto(s)
Lípidos , Activación de Linfocitos , Nanopartículas , Ovalbúmina , Animales , Ovalbúmina/inmunología , Ovalbúmina/administración & dosificación , Activación de Linfocitos/efectos de los fármacos , Ratones , Lípidos/química , Linfocitos T CD8-positivos/inmunología , Liposomas , Ratones Endogámicos C57BL , Femenino , Antígenos/inmunología , Antígenos/administración & dosificación , Linfocitos T/inmunología , Vacunas/administración & dosificación , Vacunas/inmunología
8.
Pharmaceutics ; 15(4)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37111738

RESUMEN

Bentonite or palygorskite-based hydrogels have recently been suggested as a strategy to increase bioavailability and control the retention and release of therapeutic candidates. In this work, clay-based hydrogels loaded with diclofenac acid nanocrystals have been successfully designed and developed. The aim was to improve diclofenac solubility, its dissolution rate and to enhance its local bioavailability after topical application. For this purpose, diclofenac acid nanocrystals were prepared by wet media milling technology and then loaded into inorganic hydrogels based on bentonite and/or palygorskite. Diclofenac acid nanocrystals were characterized by morphology, size, and zeta potential. Moreover, rheological behavior, morphology, solid state, release studies, and in vitro skin penetration/permeation of diclofenac acid nanocrystals-loaded hydrogels were performed. The hydrogels were characterized by a crystalline structure, and demonstrated that the inclusion of diclofenac in clay-based hydrogels resulted in an increased thermal stability. The presence of both palygorskite and bentonite reduced nanocrystal mobility, and consequently its release and penetration into the skin. On the other hand, bentonite- or palygorskite-based hydrogels revealed great potential as an alternative strategy to enhance topical bioavailability of DCF nanocrystals, enhancing their penetration to the deeper skin layers.

9.
Pharmaceutics ; 15(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765277

RESUMEN

Applying a formulation on the skin represents a patient-acceptable and therapeutically effective way to administer drugs locally and systemically. However, the stratum corneum stands as an impermeable barrier that only allows a very limited number of drugs to be distributed in the underlying tissues, limiting the feasibility of this administration route. Microneedle arrays are minimally invasive platforms that allow the delivery of drugs within/across the skin through the temporary mechanical disruption of the stratum corneum. In this work, microneedle arrays were combined with nanosuspensions, a technology for solubility enhancement of water insoluble molecules, for the skin delivery of diclofenac. Nanosuspensions were prepared using a top-down method and loaded in the tips of 500 µm or 800 µm high microneedles. The quality of the combined platform was assessed using electron microscopy and spectroscopic and calorimetry techniques, demonstrating the ability to load high amounts of the hydrophobic drug and the compatibility between excipients. Lastly, the application of nanosuspension-loaded microneedles on the skin in vitro allowed the delivery of diclofenac within and across the stratum corneum, proving the potential of this combination to enhance skin delivery of scarcely soluble drugs.

10.
Front Neuroinform ; 17: 1248632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649987

RESUMEN

Introduction: Multiple sclerosis (MS) is a persistent neurological condition impacting the central nervous system (CNS). The precise cause of multiple sclerosis is still uncertain; however, it is thought to arise from a blend of genetic and environmental factors. MS diagnosis includes assessing medical history, conducting neurological exams, performing magnetic resonance imaging (MRI) scans, and analyzing cerebrospinal fluid. While there is currently no cure for MS, numerous treatments exist to address symptoms, decelerate disease progression, and enhance the quality of life for individuals with MS. Methods: This paper introduces a novel machine learning (ML) algorithm utilizing decision trees to address a key objective: creating a predictive tool for assessing the likelihood of MS development. It achieves this by combining prevalent demographic risk factors, specifically gender, with crucial immunogenetic risk markers, such as the alleles responsible for human leukocyte antigen (HLA) class I molecules and the killer immunoglobulin-like receptors (KIR) genes responsible for natural killer lymphocyte receptors. Results: The study included 619 healthy controls and 299 patients affected by MS, all of whom originated from Sardinia. The gender feature has been disregarded due to its substantial bias in influencing the classification outcomes. By solely considering immunogenetic risk markers, the algorithm demonstrates an ability to accurately identify 73.24% of MS patients and 66.07% of individuals without the disease. Discussion: Given its notable performance, this system has the potential to support clinicians in monitoring the relatives of MS patients and identifying individuals who are at an increased risk of developing the disease.

11.
Cells ; 11(24)2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36552793

RESUMEN

Boron neutron capture therapy is a low-invasive cancer therapy based on the neutron fission process that occurs upon thermal neutron irradiation of 10B-containing compounds; this process causes the release of alpha particles that selectively damage cancer cells. Although several clinical studies involving mercaptoundecahydro-closo-dodecaborate and the boronophenylalanine-fructose complex are currently ongoing, the success of this promising anticancer therapy is hampered by the lack of appropriate drug delivery systems to selectively carry therapeutic concentrations of boron atoms to cancer tissues, allowing prolonged boron retention therein and avoiding the damage of healthy tissues. To achieve these goals, numerous research groups have explored the possibility to formulate nanoparticulate systems for boron delivery. In this review. we report the newest developments on boron vehiculating drug delivery systems based on nanoparticles, distinguished on the basis of the type of carrier used, with a specific focus on the formulation aspects.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Neoplasias , Humanos , Boro , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Neutrones
12.
Int J Pharm ; 628: 122325, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36309290

RESUMEN

In this work, the production of inhalable polymeric microparticles with modulable porosity is described. The starting polymeric material was the PHEA-g-RhB-g-PLA graft copolymer, which was suitably processed by spray drying (SD). Thanks to the addition of AB (weight percentage equal to 10 and 20 % with respect to the polymer) in the liquid feed, three biocompatible matrices were obtained with an increasing porosity in terms of pore volume (from 0.015 to 0.024 cc/g) and pore average diameter (from 1.942 to 3.060 nm), a decreasing tapped density values (from 0.75 to 0.50), and favorable aerosolization characteristics. These differences were highlighted also by a significant increase in the release of Rapamycin from the sample which showed the higher porosity (31.0 wt% after 24 hrs incubation) than the sample with the lowest porosity (14.9 wt%) in simulated lung fluid.


Asunto(s)
Portadores de Fármacos , Polímeros , Porosidad , Polvos , Tamaño de la Partícula , Administración por Inhalación
13.
Drug Deliv Transl Res ; 12(8): 1811-1828, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34755281

RESUMEN

The skin is the absorption site for drug substances intended to treat loco-regional diseases, although its barrier properties limit the permeation of drug molecules. The growing knowledge of the skin structure and its physiology have supported the design of innovative nanosystems (e.g. liposomal systems) to improve the absorption of poorly skin-permeable drugs. However, despite the dozens of clinical trials started, few topically applied liposomal systems have been authorized both in the EU and the USA. Indeed, the intrinsic complexity of the topically applied liposomal systems, the higher production costs, the lack of standardized methods and the more stringent guidelines for assessing their benefit/risk balance can be seen as causes of such inefficient translation. The present work aimed to provide an overview of the physicochemical and biopharmaceutical characterization methods that can be applied to topical liposomal systems intended to be marketed as medicinal products, and the current regulatory provisions. The discussion highlights how such methodologies can be relevant for defining the critical quality attributes of the final product, and they can be usefully applied based on the phase of the life cycle of a liposomal product: to guide the formulation studies in the early stages of development, to rationally design preclinical and clinical trials, to support the pharmaceutical quality control system and to sustain post-marketing variations. The provided information can help define harmonized quality standards able to overcome the case-by-case approach currently applied by regulatory agencies in assessing the benefit/risk of the topically applied liposomal systems.


Asunto(s)
Liposomas , Absorción Cutánea , Liposomas/química , Piel/metabolismo
14.
Pharmaceutics ; 14(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36559329

RESUMEN

The poor water solubility of a significant number of active pharmaceutical ingredients (API) remains one of the main challenges in the drug development process, causing low bioavailability and therapeutic failure of drug candidates. Curcumin is a well-known Biopharmaceutics Classification System (BCS) class IV drug, characterized by lipophilicity and low permeability, which hampers topical bioavailability. Given these premises, the aim of this work was the design and the development of curcumin nanocrystals and their incorporation into natural inorganic hydrogels for topical application. Curcumin nanocrystals were manufactured by the wet ball milling technique and then loaded in clay-based hydrogels. Bentonite and/or palygorskite were selected as the inorganic gelling agents. Curcumin nanocrystal-loaded hydrogels were manufactured by means of a homogenization process and characterized with respect to their chemico-physical properties, in vitro release, antioxidant activity and skin permeation. The results highlighted that the presence of bentonite provided an increase of curcumin skin penetration and simultaneously allowed its radical scavenging properties, due to the desirable rheological characteristics, which should guarantee the necessary contact time of the gel with the skin.

15.
J Clin Med ; 11(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887945

RESUMEN

BACKGROUND: We report on a 20-week-old female fetus with a diaphragmatic hernia and other malformations, all of which appeared after the first-trimester ultrasound. METHODS AND RESULTS: Whole trio exome sequencing (WES) on cell-free fetal DNA (cff-DNA) revealed a de novo frameshift variant of the X-linked STAG2 gene. Loss-of-function (LoF) STAG2 variants cause either holoprosencephaly (HPE) or Mullegama-Klein-Martinez syndrome (MKMS), are de novo, and only affect females, indicating male lethality. In contrast, missense mutations associate with milder forms of MKMS and follow the classic X-linked recessive inheritance transmitted from healthy mothers to male offspring. STAG2 has been reported to escape X-inactivation, suggesting that disease onset in LoF females is dependent on inadequate dosing for at least some of the transcripts, as is the case with a part of the autosomal dominant diseases. Missense STAG2 variants produce a quantity of transcripts, which, while resulting in a different protein, leads to disease only in hemizygous males. Similar inheritance patterns are described for other escapee genes. CONCLUSIONS: This study confirms the advantage of WES on cff-DNA and emphasizes the role of the type of the variant in X-linked disorders.

16.
Int J Pharm ; 625: 122079, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35932932

RESUMEN

Pomalidomide (POM) is an FDA-approved immunomodulatory imide drug (IMiDs) an it is effectively used in the treatment of multiple myeloma. IMiDs are analogs of the drug thalidomide and they have been repurposed for the treatment of several diseases such as psoriatic arthritis and Kaposi Sarcoma. In recent years, IMiDs have been also evaluated as a new treatment for neurological disorders with an inflammatory and neuroinflammatory component. POM draws particular interest for its potent anti-TNF-α activity at significantly lower concentrations than the parent compound thalidomide. However, POM's low water solubility underpins its low gastrointestinal permeability resulting in irregular and poor absorption. The purpose of this work was to prepare a POM nanocrystal-based formulation that could efficiently improve POM's plasma and brain concentration after intraperitoneal injection. POM nanocrystals prepared as a nanosuspension by the media milling method showed a mean diameter of 219 nm and a polydispersity index of 0.21. POM's nanocrystal solubility value (22.97 µg/mL) in phosphate buffer was about 1.58 folds higher than the POM raw powder. Finally, in vivo studies conducted in adult Male Sprague-Dawley rats indicated that POM nanocrystal ensured higher and longer-lasting drug levels in plasma and brain when compared with POM coarse suspension.


Asunto(s)
Nanopartículas , Talidomida , Animales , Disponibilidad Biológica , Masculino , Nanopartículas/química , Ratas , Ratas Sprague-Dawley , Roedores , Solubilidad , Talidomida/análogos & derivados , Inhibidores del Factor de Necrosis Tumoral
17.
Pharmaceutics ; 14(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35631674

RESUMEN

Needle-free liquid jet injectors are medical devices used to administer pharmaceutical solutions through the skin. Jet injectors generate a high-speed stream of liquid medication that can puncture the skin and deliver the drug to the underlying tissues. In this work, we investigated the feasibility of using liquid jet injectors to administer nanosuspensions, assessing the impact of the jet injection on their pharmaceutical and physicochemical properties. For this purpose, the model drug diclofenac was used to prepare a set of nanosuspensions, stabilized by poloxamer 188, and equilibrated at different pHs. The hydrodynamic diameter and morphology of the nanocrystals were analyzed before and after the jet injection across porcine skin in vitro, together with the solubility and release kinetics of diclofenac in a simulated subcutaneous environment. The efficacy of the jet injection (i.e., the amount of drug delivered across the skin) was evaluated for the nanosuspension and for a solution, which was used as a control. Finally, the nanosuspension was administered to rats by jet injector, and the plasma profile of diclofenac was evaluated and compared to the one obtained by jet injecting a solution with an equal concentration. The nanosuspension features were maintained after the jet injection in vitro, suggesting that no structural changes occur upon high-speed impact with the skin. Accordingly, in vivo studies demonstrated the feasibility of jet injecting a nanosuspension, reaching relevant plasma concentration of the drug. Overall, needle-free jet injectors proved to be a suitable alternative to conventional syringes for the administration of nanosuspensions.

18.
Neurotherapeutics ; 19(1): 305-324, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35072912

RESUMEN

Marketed drugs for Parkinson's disease (PD) treat disease motor symptoms but are ineffective in stopping or slowing disease progression. In the quest of novel pharmacological approaches that may target disease progression, drug-repurposing provides a strategy to accelerate the preclinical and clinical testing of drugs already approved for other medical indications. Here, we targeted the inflammatory component of PD pathology, by testing for the first time the disease-modifying properties of the immunomodulatory imide drug (IMiD) pomalidomide in a translational rat model of PD neuropathology based on the intranigral bilateral infusion of toxic preformed oligomers of human α-synuclein (H-αSynOs). The neuroprotective effect of pomalidomide (20 mg/kg; i.p. three times/week 48 h apart) was tested in the first stage of disease progression by means of a chronic two-month administration, starting 1 month after H-αSynOs infusion, when an already ongoing neuroinflammation is observed. The intracerebral infusion of H-αSynOs induced an impairment in motor and coordination performance that was fully rescued by pomalidomide, as assessed via a battery of motor tests three months after infusion. Moreover, H-αSynOs-infused rats displayed a 40-45% cell loss within the bilateral substantia nigra, as measured by stereological counting of TH + and Nissl-stained neurons, that was largely abolished by pomalidomide. The inflammatory response to H-αSynOs infusion and the pomalidomide treatment was evaluated both in CNS affected areas and peripherally in the serum. A reactive microgliosis, measured as the volume occupied by the microglial marker Iba-1, was present in the substantia nigra three months after H-αSynOs infusion as well as after H-αSynOs plus pomalidomide treatment. However, microglia differed for their phenotype among experimental groups. After H-αSynOs infusion, microglia displayed a proinflammatory profile, producing a large amount of the proinflammatory cytokine TNF-α. In contrast, pomalidomide inhibited the TNF-α overproduction and elevated the anti-inflammatory cytokine IL-10. Moreover, the H-αSynOs infusion induced a systemic inflammation with overproduction of serum proinflammatory cytokines and chemokines, that was largely mitigated by pomalidomide. Results provide evidence of the disease modifying potential of pomalidomide in a neuropathological rodent model of PD and support the repurposing of this drug for clinical testing in PD patients.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Reposicionamiento de Medicamentos , Humanos , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Ratas , Sustancia Negra/metabolismo , Talidomida/análogos & derivados , Factor de Necrosis Tumoral alfa , alfa-Sinucleína/genética
19.
J Nanosci Nanotechnol ; 21(5): 2808-2815, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653445

RESUMEN

X-ray Powder Diffraction, Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimeter were used to study the effect of the manual grinding in an agate mortar of the diclofenac acid polymorphs HD1 and HD2. In particular, we have tried to highlight how the HD2 form is more sensitive than the HD1 to the grinding process to achieve a nanometric crystal size. HD1 shows no change, while in the case of the HD2, changes in the molecular conformation and the formation of a new metastable form of the polymorph are observed after grinding.

20.
J Nanosci Nanotechnol ; 21(5): 2793-2807, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653444

RESUMEN

Inflammation underlays the onset and supports the development of several worldwide diffused pathologies, therefore in the last decades inflammatory markers have attracted a great deal of interest as diagnostic and therapeutic targets. Adhesion molecules are membrane proteins expressed by endotheliocytes and leukocytes, acting as mediators in the process of tethering, rolling, firm adhesion and diapedesis that leads the immune cells to reach an inflamed tissue. Among them, the adhesion molecule VCAM-1 has been investigated as a potential target because of its low constitutive expression and easy accessibility on the endothelium. Moreover, VCAM-1 is involved in the early stages of development of several pathologies like, among others, atherosclerosis, cancer, Alzheimer's and Parkinson's diseases, so a diagnostic or therapeutic tool directed to this protein would allow specific detection and efficacious intervention. The availability of monoclonal antibodies against VCAM-1 has recently fostered the development of various targeting technologies potentially suitable for imaging and drug delivery in VCAM-1 overexpressing pathologies. In this review we initially focus on the structure and functions of VCAM-1, giving also a brief overview of antibodies origin, structure and function; then, we summarize some of the VCAM-1 targeting nanosystems based on antibodies, gathered according to the carrier used, for diagnosis or therapeutic treatment of different inflammatory based pathologies.


Asunto(s)
Moléculas de Adhesión Celular , Molécula 1 de Adhesión Celular Vascular , Adhesión Celular , Células Endoteliales , Endotelio Vascular , Humanos , Inflamación/tratamiento farmacológico , Leucocitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA