Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Bioinformatics ; 16 Suppl 18: S2, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26677932

RESUMEN

BACKGROUND: Computational identification of cooperative transcription factor (TF) pairs helps understand the combinatorial regulation of gene expression in eukaryotic cells. Many advanced algorithms have been proposed to predict cooperative TF pairs in yeast. However, it is still difficult to conduct a comprehensive and objective performance comparison of different algorithms because of lacking sufficient performance indices and adequate overall performance scores. To solve this problem, in our previous study (published in BMC Systems Biology 2014), we adopted/proposed eight performance indices and designed two overall performance scores to compare the performance of 14 existing algorithms for predicting cooperative TF pairs in yeast. Most importantly, our performance comparison framework can be applied to comprehensively and objectively evaluate the performance of a newly developed algorithm. However, to use our framework, researchers have to put a lot of effort to construct it first. To save researchers time and effort, here we develop a web tool to implement our performance comparison framework, featuring fast data processing, a comprehensive performance comparison and an easy-to-use web interface. RESULTS: The developed tool is called PCTFPeval (Predicted Cooperative TF Pair evaluator), written in PHP and Python programming languages. The friendly web interface allows users to input a list of predicted cooperative TF pairs from their algorithm and select (i) the compared algorithms among the 15 existing algorithms, (ii) the performance indices among the eight existing indices, and (iii) the overall performance scores from two possible choices. The comprehensive performance comparison results are then generated in tens of seconds and shown as both bar charts and tables. The original comparison results of each compared algorithm and each selected performance index can be downloaded as text files for further analyses. CONCLUSIONS: Allowing users to select eight existing performance indices and 15 existing algorithms for comparison, our web tool benefits researchers who are eager to comprehensively and objectively evaluate the performance of their newly developed algorithm. Thus, our tool greatly expedites the progress in the research of computational identification of cooperative TF pairs.


Asunto(s)
Algoritmos , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Interfaz Usuario-Computador , Benchmarking , Internet , Saccharomyces cerevisiae/genética
2.
BMC Genomics ; 16 Suppl 12: S10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26679776

RESUMEN

BACKGROUND: Transcriptional regulation of gene expression in eukaryotes is usually accomplished by cooperative transcription factors (TFs). Computational identification of cooperative TF pairs has become a hot research topic and many algorithms have been proposed in the literature. A typical algorithm for predicting cooperative TF pairs has two steps. (Step 1) Define the targets of each TF under study. (Step 2) Design a measure for calculating the cooperativity of a TF pair based on the targets of these two TFs. While different algorithms have distinct sophisticated cooperativity measures, the targets of a TF are usually defined using ChIP-chip data. However, there is an inherent weakness in using ChIP-chip data to define the targets of a TF. ChIP-chip analysis can only identify the binding targets of a TF but it cannot distinguish the true regulatory from the binding but non-regulatory targets of a TF. RESULTS: This work is the first study which aims to investigate whether the performance of computational identification of cooperative TF pairs could be improved by using a more biologically relevant way to define the targets of a TF. For this purpose, we propose four simple algorithms, all of which consist of two steps. (Step 1) Define the targets of a TF using (i) ChIP-chip data in the first algorithm, (ii) TF binding data in the second algorithm, (iii) TF perturbation data in the third algorithm, and (iv) the intersection of TF binding and TF perturbation data in the fourth algorithm. Compared with the first three algorithms, the fourth algorithm uses a more biologically relevant way to define the targets of a TF. (Step 2) Measure the cooperativity of a TF pair by the statistical significance of the overlap of the targets of these two TFs using the hypergeometric test. By adopting four existing performance indices, we show that the fourth proposed algorithm (PA4) significantly out performs the other three proposed algorithms. This suggests that the computational identification of cooperative TF pairs is indeed improved when using a more biologically relevant way to define the targets of a TF. Strikingly, the prediction results of our simple PA4 are more biologically meaningful than those of the 12 existing sophisticated algorithms in the literature, all of which used ChIP-chip data to define the targets of a TF. This suggests that properly defining the targets of a TF may be more important than designing sophisticated cooperativity measures. In addition, our PA4 has the power to predict several experimentally validated cooperative TF pairs, which have not been successfully predicted by any existing algorithms in the literature. CONCLUSIONS: This study shows that the performance of computational identification of cooperative TF pairs could be improved by using a more biologically relevant way to define the targets of a TF. The main contribution of this study is not to propose another new algorithm but to provide a new thinking for the research of computational identification of cooperative TF pairs. Researchers should put more effort on properly defining the targets of a TF (i.e. Step 1) rather than totally focus on designing sophisticated cooperativity measures (i.e. Step 2). The lists of TF target genes, the Matlab codes and the prediction results of the four proposed algorithms could be downloaded from our companion website http://cosbi3.ee.ncku.edu.tw/TFI/.


Asunto(s)
Biología Computacional/métodos , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Algoritmos , Bases de Datos Genéticas , Unión Proteica , Proteínas de Saccharomyces cerevisiae
3.
PLoS One ; 11(9): e0162931, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27623007

RESUMEN

In eukaryotic cells, transcriptional regulation of gene expression is usually achieved by cooperative transcription factors (TFs). Therefore, knowing cooperative TFs is the first step toward uncovering the molecular mechanisms of gene expression regulation. Many algorithms based on different rationales have been proposed to predict cooperative TF pairs in yeast. Although various types of rationales have been used in the existing algorithms, functional coherence is not yet used. This prompts us to develop a new algorithm based on functional coherence and similarity of the target gene sets to identify cooperative TF pairs in yeast. The proposed algorithm predicted 40 cooperative TF pairs. Among them, three (Pdc2-Thi2, Hot1-Msn1 and Leu3-Met28) are novel predictions, which have not been predicted by any existing algorithms. Strikingly, two (Pdc2-Thi2 and Hot1-Msn1) of the three novel predictions have been experimentally validated, demonstrating the power of the proposed algorithm. Moreover, we show that the predictions of the proposed algorithm are more biologically meaningful than the predictions of 17 existing algorithms under four evaluation indices. In summary, our study suggests that new algorithms based on novel rationales are worthy of developing for detecting previously unidentifiable cooperative TF pairs.


Asunto(s)
Algoritmos , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Bases de Datos Genéticas , Modelos Genéticos
4.
PLoS One ; 11(7): e0159213, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27392072

RESUMEN

In eukaryotes, the precise transcriptional control of gene expression is typically achieved through combinatorial regulation using cooperative transcription factors (TFs). Therefore, a database which provides regulatory associations between cooperative TFs and their target genes is helpful for biologists to study the molecular mechanisms of transcriptional regulation of gene expression. Because there is no such kind of databases in the public domain, this prompts us to construct a database, called Yeast Combinatorial Regulation Database (YCRD), which deposits 434,197 regulatory associations between 2535 cooperative TF pairs and 6243 genes. The comprehensive collection of more than 2500 cooperative TF pairs was retrieved from 17 existing algorithms in the literature. The target genes of a cooperative TF pair (e.g. TF1-TF2) are defined as the common target genes of TF1 and TF2, where a TF's experimentally validated target genes were downloaded from YEASTRACT database. In YCRD, users can (i) search the target genes of a cooperative TF pair of interest, (ii) search the cooperative TF pairs which regulate a gene of interest and (iii) identify important cooperative TF pairs which regulate a given set of genes. We believe that YCRD will be a valuable resource for yeast biologists to study combinatorial regulation of gene expression. YCRD is available at http://cosbi.ee.ncku.edu.tw/YCRD/ or http://cosbi2.ee.ncku.edu.tw/YCRD/.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Algoritmos , Bases de Datos Genéticas , Regulación de la Expresión Génica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-27242036

RESUMEN

In eukaryotic cells, transcriptional regulation of gene expression is usually accomplished by cooperative Transcription Factors (TFs). Therefore, knowing cooperative TFs is helpful for uncovering the mechanisms of transcriptional regulation. In yeast, many cooperative TF pairs have been predicted by various algorithms in the literature. However, until now, there is still no database which collects the predicted yeast cooperative TFs from existing algorithms. This prompts us to construct Cooperative Transcription Factors Database (CoopTFD), which has a comprehensive collection of 2622 predicted cooperative TF pairs (PCTFPs) in yeast from 17 existing algorithms. For each PCTFP, our database also provides five types of validation information: (i) the algorithms which predict this PCTFP, (ii) the publications which experimentally show that this PCTFP has physical or genetic interactions, (iii) the publications which experimentally study the biological roles of both TFs of this PCTFP, (iv) the common Gene Ontology (GO) terms of this PCTFP and (v) the common target genes of this PCTFP. Based on the provided validation information, users can judge the biological plausibility of a PCTFP of interest. We believe that CoopTFD will be a valuable resource for yeast biologists to study the combinatorial regulation of gene expression controlled by cooperative TFs.Database URL: http://cosbi.ee.ncku.edu.tw/CoopTFD/ or http://cosbi2.ee.ncku.edu.tw/CoopTFD/.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Regulación Fúngica de la Expresión Génica/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Algoritmos
6.
BMC Syst Biol ; 9 Suppl 6: S2, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26678747

RESUMEN

BACKGROUND: Biologists are puzzled by the extremely low percentage (3%) of the binding targets of a yeast transcription factor (TF) affected when the TF is knocked out, a phenomenon observed by comparing the TF binding dataset and TF knockout effect dataset. RESULTS: This study gives a plausible biological explanation of this counterintuitive phenomenon. Our analyses find that TFs with high functional redundancy show significantly lower percentage than do TFs with low functional redundancy. This suggests that functional redundancy may lead to one TF compensating for another, thus masking the TF knockout effect on the binding targets of the knocked-out TF. In addition, we show that seven classes of genes (lowly expressed genes, TATA box-less genes, genes containing a nucleosome-free region immediately upstream of the transcriptional start site (TSS), genes with low transcriptional plasticity, genes with a low number of bound TFs, genes with a low number of TFBSs, and genes with a short average distance of TFBSs to the TSS) are insensitive to the knockout of their promoter-binding TFs, providing clues for finding other biological explanations of the surprisingly low percentage of the binding targets of a TF affected when the TF is knocked out. CONCLUSIONS: This study shows that one property of TFs (functional redundancy) and seven properties of genes (expression level, TATA box, nucleosome, transcriptional plasticity, the number of bound TFs, the number of TFBSs, and the average distance of TFBSs to the TSS) may be useful for explaining a counterintuitive phenomenon: most binding targets of a yeast transcription factor are not affected when the transcription factor is knocked out.


Asunto(s)
Biología Computacional , Técnicas de Inactivación de Genes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Unión Proteica , TATA Box , Factores de Transcripción/deficiencia , Sitio de Iniciación de la Transcripción
7.
BMC Syst Biol ; 8 Suppl 4: S9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25521604

RESUMEN

BACKGROUND: Eukaryotic transcriptional regulation is known to be highly connected through the networks of cooperative transcription factors (TFs). Measuring the cooperativity of TFs is helpful for understanding the biological relevance of these TFs in regulating genes. The recent advances in computational techniques led to various predictions of cooperative TF pairs in yeast. As each algorithm integrated different data resources and was developed based on different rationales, it possessed its own merit and claimed outperforming others. However, the claim was prone to subjectivity because each algorithm compared with only a few other algorithms and only used a small set of performance indices for comparison. This motivated us to propose a series of indices to objectively evaluate the prediction performance of existing algorithms. And based on the proposed performance indices, we conducted a comprehensive performance evaluation. RESULTS: We collected 14 sets of predicted cooperative TF pairs (PCTFPs) in yeast from 14 existing algorithms in the literature. Using the eight performance indices we adopted/proposed, the cooperativity of each PCTFP was measured and a ranking score according to the mean cooperativity of the set was given to each set of PCTFPs under evaluation for each performance index. It was seen that the ranking scores of a set of PCTFPs vary with different performance indices, implying that an algorithm used in predicting cooperative TF pairs is of strength somewhere but may be of weakness elsewhere. We finally made a comprehensive ranking for these 14 sets. The results showed that Wang J's study obtained the best performance evaluation on the prediction of cooperative TF pairs in yeast. CONCLUSIONS: In this study, we adopted/proposed eight performance indices to make a comprehensive performance evaluation on the prediction results of 14 existing cooperative TFs identification algorithms. Most importantly, these proposed indices can be easily applied to measure the performance of new algorithms developed in the future, thus expedite progress in this research field.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Factores de Transcripción/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
BMC Syst Biol ; 8 Suppl 5: S2, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25559499

RESUMEN

BACKGROUND: Transcriptional regulation of gene expression is usually accomplished by multiple interactive transcription factors (TFs). Therefore, it is crucial to understand the precise cooperative interactions among TFs. Various kinds of experimental data including ChIP-chip, TF binding site (TFBS), gene expression, TF knockout and protein-protein interaction data have been used to identify cooperative TF pairs in existing methods. The nucleosome occupancy data is not yet used for this research topic despite that several researches have revealed the association between nucleosomes and TFBSs. RESULTS: In this study, we developed a novel method to infer the cooperativity between two TFs by integrating the TF-gene documented regulation, TFBS and nucleosome occupancy data. TF-gene documented regulation and TFBS data were used to determine the target genes of a TF, and the genome-wide nucleosome occupancy data was used to assess the nucleosome occupancy on TFBSs. Our method identifies cooperative TF pairs based on two biologically plausible assumptions. If two TFs cooperate, then (i) they should have a significantly higher number of common target genes than random expectation and (ii) their binding sites (in the promoters of their common target genes) should tend to be co-depleted of nucleosomes in order to make these binding sites simultaneously accessible to TF binding. Each TF pair is given a cooperativity score by our method. The higher the score is, the more likely a TF pair has cooperativity. Finally, a list of 27 cooperative TF pairs has been predicted by our method. Among these 27 TF pairs, 19 pairs are also predicted by existing methods. The other 8 pairs are novel cooperative TF pairs predicted by our method. The biological relevance of these 8 novel cooperative TF pairs is justified by the existence of protein-protein interactions and co-annotation in the same MIPS functional categories. Moreover, we adopted three performance indices to compare our predictions with 11 existing methods' predictions. We show that our method performs better than these 11 existing methods in identifying cooperative TF pairs in yeast. Finally, the cooperative TF network constructed from the 27 predicted cooperative TF pairs shows that our method has the power to find cooperative TF pairs of different biological processes. CONCLUSION: Our method is effective in identifying cooperative TF pairs in yeast. Many of our predictions are validated by the literature, and our method outperforms 11 existing methods. We believe that our study will help biologists to understand the mechanisms of transcriptional regulation in eukaryotic cells.


Asunto(s)
Proteínas Fúngicas/metabolismo , Nucleosomas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Bases de Datos de Proteínas , Almacenamiento y Recuperación de la Información , Datos de Secuencia Molecular , Unión Proteica , Análisis de Secuencia de Proteína/métodos , Transcripción Genética/fisiología
9.
PLoS One ; 8(12): e83791, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386279

RESUMEN

Transcription factor binding site (TFBS) identification plays an important role in deciphering gene regulatory codes. With comprehensive knowledge of TFBSs, one can understand molecular mechanisms of gene regulation. In the recent decades, various computational approaches have been proposed to predict TFBSs in the genome. The TFBS dataset of a TF generated by each algorithm is a ranked list of predicted TFBSs of that TF, where top ranked TFBSs are statistically significant ones. However, whether these statistically significant TFBSs are functional (i.e. biologically relevant) is still unknown. Here we develop a post-processor, called the functional propensity calculator (FPC), to assign a functional propensity to each TFBS in the existing computationally predicted TFBS datasets. It is known that functional TFBSs reveal strong positional preference towards the transcriptional start site (TSS). This motivates us to take TFBS position relative to the TSS as the key idea in building our FPC. Based on our calculated functional propensities, the TFBSs of a TF in the original TFBS dataset could be reordered, where top ranked TFBSs are now the ones with high functional propensities. To validate the biological significance of our results, we perform three published statistical tests to assess the enrichment of Gene Ontology (GO) terms, the enrichment of physical protein-protein interactions, and the tendency of being co-expressed. The top ranked TFBSs in our reordered TFBS dataset outperform the top ranked TFBSs in the original TFBS dataset, justifying the effectiveness of our post-processor in extracting functional TFBSs from the original TFBS dataset. More importantly, assigning functional propensities to putative TFBSs enables biologists to easily identify which TFBSs in the promoter of interest are likely to be biologically relevant and are good candidates to do further detailed experimental investigation. The FPC is implemented as a web tool at http://santiago.ee.ncku.edu.tw/FPC/.


Asunto(s)
Biología Computacional/métodos , Proteínas de Unión al ADN/metabolismo , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Regulación Fúngica de la Expresión Génica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA