Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 47(4): 1017-1023, 2022 Feb.
Artículo en Zh | MEDLINE | ID: mdl-35285202

RESUMEN

This study explored the protective effect of atractylenolide Ⅰ(AO-Ⅰ) against acetaminophen(APAP)-induced acute liver injury(ALI) in mice and its underlying mechanism. C57 BL/6 J mice were randomly divided into a control group, an APAP group(500 mg·kg~(-1)), a low-dose combination group(500 mg·kg~(-1) APAP + 60 mg·kg~(-1) AO-Ⅰ), and a high-dose combination group(500 mg·kg~(-1) APAP + 120 mg·kg~(-1) AO-Ⅰ). ALI was induced by intraperitoneal injection of APAP(500 mg·kg~(-1)). AO-Ⅰ by intragastric administration was performed 2 hours before APAP treatment, and the control group received the same dose of solvent by intragastric administration or intraperitoneal injection. The protective effect of AO-Ⅰ against APAP-induced ALI was evaluated by detecting alanine aminotransferase(ALT) and aspartate aminotransferase(AST) levels in the plasma and H&E staining in liver tissues of mice. The malondialdehyde(MDA) and glutathione(GSH) content and catalase(CAT) activity in mouse liver tissues were detected to evaluate the effect of AO-Ⅰ on APAP-induced oxidative stress in the liver. The proteins in the liver p38 mitogen-activated protein kinase(p38 MAPK), c-jun N-terminal kinase(JNK), and nuclear factor kappa-B p65(NF-κB p65) signaling pathways were measured by Western blot, and the liver inflammatory cytokines interleukin-1ß(IL-1ß) and interleukin-6(IL-6) were detected by real-time PCR. Compared with the APAP group, the combination groups showed reduced APAP-induced ALT level and liver MDA content, potentiated liver CAT activity, and elevated GSH content. Mechanistically, AO-Ⅰ treatment significantly inhibited APAP-up-regulated MAPK phosphorylation and NF-κB p65, and significantly reduced the transcriptional activities of IL-1ß and IL-6, downstream targets of NF-κB p65. AO-Ⅰ can improve APAP-induced ALI and the underlying mechanism is related to the inhibition of the MAPK/NF-κB p65 signaling pathway in APAP-challenged mice.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Acetaminofén/efectos adversos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Lactonas , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Sesquiterpenos , Transducción de Señal
3.
Heliyon ; 10(11): e31195, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38832279

RESUMEN

Penthorum chinense Pursh (P. chinense), a functional food, has been applied to protect the liver against alcohol-related fatty liver disease (ALD) for a long history in China. This study was designed to evaluate the ameliorative activity of the polyphenolic fraction in P. chinense (PGF) depending on the relief of ALD. The ALD mouse model was established by exposing the mice to a Lieber-DeCarli alcohol liquid diet. We found that PGF administration significantly ameliorated alcohol-induced liver injury, steatosis, oxidative stress, and inflammation in mice. Furthermore, alcohol-increased levels of the critical hepatic lipid synthesis proteins sterol regulatory element binding transcription factor (SREBP-1) and diacylglycerol o-acyltransferase 2 (DGAT2) were attenuated by PGF. Similarly, PGF inhibited the expression of the lipid transport protein very low-density lipoprotein receptor (VLDLR). Interestingly, PGF restored alcohol-inhibited expression of carnitine palmitoyltransferase 1 (CPT1) and peroxisome proliferator-activated receptor alpha (PPARα), essential fatty acid ß-oxidation proteins. Mechanistic studies revealed that PGF protects against alcohol-induced hepatocyte injury and lipid deposition via the SIRT1/AMPK signaling pathway. In sum, this research clearly demonstrated the protective effects of PGF against ALD, which was mediated by activating SIRT1/AMPK pathways in hepatocytes. We provide a new theoretical basis for using P. chinense as a functional food in ALD.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36690322

RESUMEN

Alcohol abuse and its related diseases are the major risk factors for human health. Alcohol-related liver disease (ALD) is a leading cause of morbidity and mortality worldwide. Although the mechanism of ALD has been widely investigated, liver metabolites associated with long-term alcohol intake-induced hepatic steatosis have not been well explored. In this study, we aimed to investigate the role and mechanisms of 1-methylnicotinamide (1-MNA), a metabolite during nicotinamide adenine dinucleotide (NAD+) metabolism, in the pathogenesis of ALD. C57BL/6 wild-type mice were subjected to chronic alcohol feeding with or without 1-MNA (50 mg/kg/day). Our data showed that 1-MNA administration significantly enhanced chronic alcohol consumption-induced hepatic steatosis. Mechanistic studies revealed that alcohol-increased hepatic protein levels of sterol regulatory element-binding transcription factor (SREBP-1c), a key enzyme that regulates lipid lipogenesis, were enhanced in mice administered with 1-MNA, regardless of alcohol feeding. Consistently, alcohol-increased mRNA and protein levels of hepatic diacylglycerol o-acyltransferase 2 (DGAT2) and very low-density lipoprotein receptor (VLDLR) were also exacerbated by 1-MNA administration. Alcohol-induced hepatic endoplasmic reticulum (ER) stress was enhanced by 1-MNA administration, which was evidenced by increased protein levels of binding immunoglobulin protein (BIP), phosphorylated- protein kinase r-like ER kinase (PERK), activating transcription factor 4 (ATF4), and C/EBP-homologous protein (CHOP) in the mouse liver. Overall, this study demonstrated that 1-MNA serves as a pathogenic factor in the development of ALD. Targeting liver 1-MNA levels may serve as a promising therapeutic approach for improving hepatic steatosis in ALD.


Asunto(s)
Hígado Graso Alcohólico , Hígado Graso , Animales , Ratones , Enfermedad Crónica , Etanol/efectos adversos , Hígado Graso/inducido químicamente , Hígado Graso Alcohólico/genética , Ratones Endogámicos C57BL , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
5.
Food Res Int ; 157: 111259, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761571

RESUMEN

This present study was designed to test the protective role of two Lactobacillus plantarum strains, E680 and ZY08, against alcoholic liver disease (ALD) in C57BL/6 mice. The ALD mouse model was established by exposing the mice to a Lieber-DeCarli ethanol liquid diet. The two probiotic strains (109 cfu/day) were administered by oral gavage, respectively. Our data showed that L. plantarum ZY08, but not E680, intervention significantly mitigated alcohol-related hepatic steatosis, liver injury, intestinal barrier, and it alleviated plasma endotoxin (LPS) levels, and affected hepatic genes relating to lipid metabolism. Furthermore, Lactobacillus plantarum ZY08 effectively restored intestinal flora homeostasis via recovering flora abundance, including Blautia, Oscillibacter, Lachnoclostridium and Intestimonas, and consequently elevated intestinalshort-chain fatty acid (SCFA) content. More importantly, removing intestinal microorganisms through ABX gavage markedly abolished the beneficial aspects of Lactobacillus plantarum ZY08, indicating that the regulative role of Lactobacillus plantarum ZY08 contributed to its protective role against ALD. Overall, Lactobacillus plantarum ZY08 is a potential candidate for mitigating alcohol-induced hepatic steatosis and liver injury.


Asunto(s)
Hígado Graso Alcohólico , Microbioma Gastrointestinal , Lactobacillus plantarum , Hepatopatías Alcohólicas , Animales , Hígado Graso Alcohólico/prevención & control , Homeostasis , Hepatopatías Alcohólicas/prevención & control , Ratones , Ratones Endogámicos C57BL
6.
Front Pharmacol ; 13: 797499, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35126160

RESUMEN

Background: Acetaminophen (APAP) overdose results in the production of reactive oxygen species (ROS), induces hepatocyte necrosis, and leads to acute liver failure. Atractylenolide I (AO-I), a phytochemical found in Atractylodes macrocephala Koidz, is known to exhibit antioxidant activity. However, its clinical benefits against drug-induced liver injury remain largely unclear. Purpose: This study aimed at evaluating the protective effects of AO-I against APAP-induced acute liver injury. Methods: C57BL/6 mice were administered 500 mg/kg APAP to induce hepatotoxicity. AO-Ⅰ (60 and 120 mg/kg) was intragastrically administered 2 h before APAP dosing. Liver histopathological changes, oxidative stress and hepatic inflammation markers from each group were observed. Results: We observed that AO-I treatment significantly reversed APAP-induced liver injury, as evidenced by improved plasma alanine transaminase (ALT) level, aspartate aminotransferase (AST) and liver H&E stain. APAP treatment increased liver malondialdehyde (MDA) content and reduced catalase (CAT) and glutathione (GSH) level; however, these effects were alleviated by AO-I intervention. Moreover, AO-I treatment significantly inhibited APAP-induced activation of pro-inflammatory factors, such as IL-1ß, IL-6, and TNF-α, at both the mRNA and protein levels. Mechanistic studies revealed that AO-I attenuated APAP-induced activation of TLR4, NF-κB and MAPKs (including JNK and p38). Conclusion: AO-I mediates protective effects against APAP-induced hepatotoxicity via the TLR4/MAPKs/NF-κB pathways. Thus, AO-I is a candidate therapeutic compound for APAP-induced hepatotoxicity.

7.
Oxid Med Cell Longev ; 2022: 4557532, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355867

RESUMEN

Objective: Hepatic metabolic disorder induced by lipotoxicity plays a detrimental role in metabolic fatty liver disease pathogenesis. Cimifugin (Cim), a coumarin derivative extracted from the root of Saposhnikovia divaricata, possesses multiple biological properties against inflammation, allergy, and oxidative stress. However, limited study has addressed the hepatoprotective role of Cim. Here, we investigate the protective effect of Cim against lipotoxicity-induced cytotoxicity and steatosis in hepatocytes and clarify its potential mechanisms. Methods: AML-12, a nontransformed mouse hepatocyte cell line, was employed in this study. The cells were incubated with palmitate or oleate to imitate hepatotoxicity or steatosis model, respectively. Results: Cim significantly reversed palmitate-induced hepatocellular injury in a dose-dependent manner, accompanied by improvements in oxidative stress and mitochondrial damage. Cim pretreatment reversed palmitate-stimulated TLR4/p38 MAPK activation and SIRT1 reduction without affecting JNK, ERK1/2, and AMPK pathways. The hepatoprotective effects of Cim were abolished either through activating TLR4/p38 by their pharmacological agonists or genetical silencing SIRT1 via special siRNA, indicating a mechanistic involvement. Moreover, Cim treatment improved oleate-induced hepatocellular lipid accumulation, which could be blocked by either TLR4 stimulation or SIRT1 knockdown. We observed that SIRT1 was a potential target of TLR4 in palmitate-treated hepatocytes, since TLR4 agonist LPS aggravated, whereas TLR4 antagonist CLI-095 alleviated palmitate-decreased SIRT1 expression. SIRT1 knockdown did not affect palmitate-induced TLR4. In addition, TLR4 activation by LPS significantly abolished Cim-protected SIRT1 reduction induced by palmitate. These results collaboratively indicated that TLR4-regulated SIRT1 pathways was mechanistically involved in the protective effects of Cim against lipotoxicity. Conclusion: In brief, we demonstrate the protective effects of Cim against lipotoxicity-induced cell death and steatosis in hepatocytes. TLR4-regulated p38 MAPK and SIRT1 pathways are involved in Cim-protected hepatic lipotoxicity. Cim is a potential candidate for improving hepatic metabolic disorders mediated by lipotoxicity.


Asunto(s)
Hígado Graso , Sirtuina 1 , Animales , Cromonas , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Ratones , Sirtuina 1/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Front Nutr ; 9: 1071284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698477

RESUMEN

This present study was designed to explore the protective role of Lactobacillus plantarum ZJUIDS14 against Non-alcoholic Fatty Liver Disease (NAFLD) in a high-fat-diet (HFD)-induced C57BL/6 mice model. The probiotic (109 CFU/every other day) was administered by oral gavage for 12 weeks. We found that L. plantarum ZJUIDS14 intervention significantly alleviated HFD related hepatic steatosis, liver damage, insulin resistance, and increased hepatic expression of peroxisome proliferator activated receptor α (PPAR-α) while stimulating the activation of AMP-activated protein kinase (AMPK). Furthermore, L. plantarum ZJUIDS14 improved mitochondrial function as reflected by an increase in dynamin related protein 1 (DRP1) and a decrease of proteins associated with oxidative phosphorylation (OXPHOS) after the treatment. Additionally, mice from the L. plantarum ZJUIDS14 group had a restored intestinal flora and homeostasis involving Coprostanoligenes group, Ruminococcaceae UCG-014, Allobaculum, Ruminiclostridium 1, and Roseburia. Meanwhile, these five genera exhibited a significant (negative or positive) association with ileum inflammation mRNA levels and SCFA contents, by Spearman's correlation analysis. In general, our data demonstrated that L. plantarum ZJUIDS14 mitigates hepatic steatosis and liver damage induced by HFD. Specifically, they strengthened the integrity of the intestinal barrier, regulated gut microbiota, and improved mitochondrial function. Our data provide an experimental basis for L. plantarum ZJUIDS14 as a promising candidate to prevent NAFLD.

9.
Food Funct ; 13(6): 3368-3380, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35229847

RESUMEN

N-Acetylcysteine (NAC), a well-accepted antioxidant, has been shown to protect against high fat diet (HFD)-induced obesity-associated non-alcoholic fatty liver disease (NAFLD) in mice. However, the underlying mechanism(s) of the beneficial role of NAC is still not fully understood. Our study aimed to evaluate the protective effect of NAC against NAFLD in terms of gut microbiota homeostasis. Thirty-two C57BL/6 mice were divided into four groups, including chow diet (CHOW), high-fat diet (HFD), CHOW + NAC (2 g L-1 in the drinking water), and HFD + NAC groups, and fed for 12 weeks. NAC supplementation significantly improved HFD-induced obesity, dyslipidemia, and liver dysfunction in mice. NAC also rescued HFD-caused disorder of the gut microbiota. Intriguingly, removing intestinal microorganisms by antibiotics (ABX) obviously abolished NAC supplementation-rescued hepatic steatosis and liver injury, indicating the involvement of the gut microbiota in the beneficial role of NAC. The profiles of 1145 expressed hepatic mRNAs were analyzed by whole transcriptome sequencing. Among those, 5 up-expressed mRNAs induced by a HFD, including Cidea, CD36, Acnat2, Mogat1, and GPAT3, were reversed by NAC treatment, which was further verified by a quantitative real-time polymerase chain reaction (qRT-PCR). Meanwhile, those 5 mRNAs exhibited a significant (negative or positive) association with bacterial phyla or genera, including phyla Firmicutes and Bacteroidetes and genera norank_f_Erysipelotrichaceae and Lachnoclostridium, by Spearman's correlation analysis. These results suggested that the homeostasis of the gut microbiota plays an important role in NAC-improved NAFLD by affecting the enterohepatic axis.


Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , 1-Acilglicerol-3-Fosfato O-Aciltransferasa , Acetilcisteína/farmacología , Animales , Dieta Alta en Grasa/efectos adversos , Hígado , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/microbiología
10.
Front Pharmacol ; 12: 752148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603062

RESUMEN

Background: Alcoholic liver disease (ALD) caused by chronic ethanol overconsumption is a common type of liver disease with a severe mortality burden throughout the world. The pathogenesis of ALD is complex, and no effective clinical treatment for the disease has advanced so far. Prolonged alcohol abstinence is the most effective therapy to attenuate the clinical course of ALD and even reverse liver damage. However, the molecular mechanisms involved in alcohol abstinence-improved recovery from alcoholic fatty liver remain unclear. This study aims to systematically evaluate the beneficial effect of alcohol abstinence on pathological changes in ALD. Methods: Using the Lieber-DeCarli mouse model of ALD, we analysed whether 1-week alcohol withdrawal reversed alcohol-induced detrimental alterations, including oxidative stress, liver injury, lipids metabolism, and hepatic inflammation, by detecting biomarkers and potential targets. Results: Alcohol withdrawal ameliorated alcohol-induced hepatic steatosis by improving liver lipid metabolism reprogramming via upregulating phosphorylated 5'-AMP -activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor-α (PPAR-α), and carnitine palmitoyltransferase-1 (CPT-1), and downregulating fatty acid synthase (FAS) and diacylglycerol acyltransferase-2 (DGAT-2). The activities of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-px), were significantly enhanced by alcohol withdrawal. Importantly, the abstinence recovered alcohol-fed induced liver injury, as evidenced by the improvements in haematoxylin and eosin (H&E) staining, plasma alanine aminotransferase (ALT) levels, and liver weight/body weight ratio. Alcohol-stimulated toll-like receptor 4/mitogen-activated protein kinases (TLR4/MAPKs) were significantly reversed by alcohol withdrawal, which might mechanistically contribute to the amelioration of liver injury. Accordingly, the hepatic inflammatory factor represented by tumour necrosis factor-alpha (TNF-α) was improved by alcohol abstinence. Conclusion: In summary, we reported that alcohol withdrawal effectively restored hepatic lipid metabolism and reversed liver injury and inflammation by improving metabolism reprogramming. These findings enhanced our understanding of the biological mechanisms involved in the beneficial role of alcohol abstinence as an effective treatment for ALD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA