Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 16(43): 23985-92, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25285782

RESUMEN

Hydrogen storage and release are two essential parameters that define the efficiency of a hydrogen storage medium. Herein, we investigate the effects of the external electric field F on the adsorption-desorption of H2 on a Ca-decorated silicene system (Ca-silicene) based on density functional theory calculations. Our study demonstrates that nine H2 molecules per Ca atom can be adsorbed and 6.4 wt% H2 can be adsorbed on Ca-silicene with an average binding energy of 0.19 eV per H2, while the appropriate F can be used to effectively enhance the hydrogen storage-release on the Ca-silicene system. The high synergetic effect may be attributed to the observation that F induces an enhancement of the charge transfer between H2 molecules and the Ca-silicene system. Thus, the Ca-silicene system together with the synergy of F can efficiently facilitate H2 adsorption-desorption, completing the whole hydrogen storage-release cycle.

2.
J Environ Sci (China) ; 26(7): 1505-12, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25080000

RESUMEN

Microwave-induced nitrogen-doped titanate nanotubes (NTNTs) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Zeta potential analysis, specific surface area (SBET), and UV-Visible spectroscopy. TEM results indicate that NTNTs retain a tubular structure with a crystalline multiwall and have a length of several hundred nanometers after nitrogen doping. XRD findings demonstrate that the crystalline structure of NTNTs was dominated by anatase, which is favored for photocatalytic application. The Ti-O-N linkage observed in the XPS N 1s spectrum is mainly responsible for narrowing the band gap and eventually enhancing the visible light photoactivity. FT-IR results demonstrated the existence of H3O⁺, which could be excited by photo-generated holes to form hydroxyl radicals and degrade environmental pollutants. After sintering at 350°C, the UV-Vis absorbance edges of NTNTs significantly shift to the visible-light region, which indicates N atom doping into the nanotubes. Photocatalytic degradation of Rhodamine B (RhB) via NTNTs show good efficiency, with pseudo first-order kinetic model rate constants of 3.7 × 10⁻³, 2.4 × 10⁻³ and 8.0 × 10⁻4 sec⁻¹ at pH3, 7, and 11, respectively.


Asunto(s)
Microondas , Nanotubos/química , Rodaminas/química , Titanio/química , Catálisis , Cristalografía por Rayos X , Microscopía Electrónica de Transmisión , Procesos Fotoquímicos , Análisis Espectral/métodos
3.
J Hazard Mater ; 319: 121-9, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27021261

RESUMEN

A p-n junction based Cu2O-doped TiO2 nanotube arrays (Cu2O-TNAs) were synthesized and used as a working anode in a photoelectrochemical (PEC) system. The results revealed that the Cu2O-TNAs were dominated by the anatase phase and responded significantly to visible light. XPS analyses indicated that with an amount of 24.79% Cu doping into the structure, the band gap of Cu2O-TNAs was greatly reduced. SEM images revealed that the supported TiO2 nanotubes had diameters of approximately 80nm and lengths of about 2.63µm. Upon doping with Cu2O, the TiO2 nanotubes maintained their structural integrity, exhibiting no significant morphological change, favoring PEC applications. Under illumination, the photocurrent from Cu2O/TNAs was 2.4 times larger than that from TNAs, implying that doping with Cu2O significantly improved electron mobility by reducing the rate of recombination of electron-hole pairs. The EIS and Bode plot revealed that the estimated electron lifetimes, τel, of TNAs and Cu2O/TNAs were 6.91 and 26.26ms, respectively. The efficiencies of degradation of Ibuprofen by photoelectrochemical, photocatalytic (PC), electrochemical (EC) and photolytic (P) methods were measured.


Asunto(s)
Cobre/química , Luz , Nanotubos/química , Titanio/química , Catálisis , Cobre/efectos de la radiación , Técnicas Electroquímicas , Ibuprofeno/química , Nanotubos/efectos de la radiación , Oxidación-Reducción , Procesos Fotoquímicos , Titanio/efectos de la radiación
4.
Chemosphere ; 150: 605-614, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26899855

RESUMEN

A p-n junction Cu2O doped TiO2 nanotube arrays (Cu2O/TNAs) were synthesized by square wave voltammetry electrochemical (SWVE) deposition method and employed as the working anode. The crystalline, optical properties, surface morphology, and structure of the Cu2O/TNAs were characterized by XRD, UV-vis absorbance edges, SEM, and XPS. Results showed that the Cu2O/TNAs were dominated by anatase phase after sintering at 450 °C with significant visible light response. XPS finding confirmed XRD results that the copper element in Cu2O/TNAs was Cu (I) instead of Cu (II). SEM images illustrated the diameter and the length of supported TiO2 nanotubes was approximately 100 nm and 2.75-4.34 µm, respectively. After Cu2O doping, the nano-tubular structure of TiO2 nanotube kept its integrity with no significant morphological change, which was beneficial for PEC applications. The photocurrent of Cu2O/TNAs was 1.45 times larger than that of TNAs, implying that Cu2O doping significantly enhanced electron mobility by reducing the recombination of electron-hole pairs. In addition, electrochemical impedance spectroscopy (EIS) measurements revealed that the recombination of photogenerated electron-hole pairs was inhibited as the bias potential was applied. Results of Bode plot further demonstrated that the electron lifetime τel of Cu2O/TNAs-20 (30.79 ms), under 0.5 V bias potential, was about 2.23 times higher than that of pure TNAs (13.82 ms). Results of electron spin resonance (ESR) analyses demonstrate that the hydroxyl radicals (OH) are responsible for the PEC decomposition of Ibuprofen.


Asunto(s)
Cobre/química , Técnicas Electroquímicas/métodos , Hidrógeno/química , Ibuprofeno/química , Nanotubos/química , Titanio/química , Catálisis , Espectroscopía Dieléctrica , Técnicas Electroquímicas/instrumentación , Electrodos , Espectroscopía de Resonancia por Spin del Electrón , Ibuprofeno/efectos de la radiación , Luz , Oxidación-Reducción , Fotoquímica , Propiedades de Superficie
5.
J Hazard Mater ; 183(1-3): 754-8, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20732743

RESUMEN

This study employs a rapid, energy frugal and environmental friendly method to synthesize nitrogen doped titanate nanotubes (NTNTs), and uses TEM, XRD, Raman, nitrogen adsorption-desorption isotherms analysis, and UV-vis spectroscopy to characterize the obtained NTNTs. TEM results demonstrate that the current research successfully synthesized one-dimensional NTNTs via the microwave hydrothermal (M-H) method, and show that NTNTs retain a tubular structure after sintering at a temperature of 350°C. XRD results agree well with Raman spectrum findings. Both show that the intensity of anatase crystallization increases with an increase in sintering temperature. After sintering at high temperature, above 250°C, the UV-vis absorbance edges of NTNTs significantly shift to the visible-light region, which illustrates N atom doping into nanotubes. Photocatalytic tests conclude that the NTNTs-350 shows good efficiency with visible-light response.


Asunto(s)
Luz , Nanotubos/química , Nitrógeno/química , Procesos Fotoquímicos , Titanio/química , Catálisis , Técnicas de Química Analítica , Microondas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA