Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 24(42): 10612-10616, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29874405

RESUMEN

A general and efficient method for shaping MOFs into fluidized forms has been developed by direct conversion of metal oxides supported on fluidized mesoporous silica. The resulting fluidized MOF hybrid materials containing diamines coordinated at the open metal sites have been studied as CO2 solid sorbents from post-combustion flue gas showing similar performance than their bulk counterparts. These new fluidized MOF hybrid materials can be used for other applications involving fluidized bed reactor configurations, in which MOFs have never been considered.

2.
Angew Chem Int Ed Engl ; 56(43): 13302-13306, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28861939

RESUMEN

Solid-state crystallization achieves selective confinement of metal-organic framework (MOF) nanocrystals within mesoporous materials, thereby rendering active sites more accessible compared to the bulk-MOF and enhancing the chemical and mechanical stability of MOF nanocrystals. (Zr)UiO-66(NH2 )/SiO2 hybrid materials were tested as efficient and reusable heterogeneous catalysts for the synthesis of steroid derivatives, outperforming the bulk (Zr)UiO-66(NH2 ) MOF. A clear correlation between the catalytic activity of the dispersed Zr sites present in the confined MOF, and the loading of the mesoporous SiO2 , is demonstrated for steroid transformations.

3.
ChemSusChem ; 12(12): 2598-2604, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-30998836

RESUMEN

ABO3-δ perovskites are ideal for high-temperature thermochemical air separation for oxygen production because their oxygen nonstoichiometry δ can be varied in response to changes in temperature and oxygen partial pressure [ p O 2 ]. Herein, the outstanding oxygen-sorption performance of CaCox Zr1-x O3-δ perovskites and their potential application as oxygen-selective sorbents for air separation is reported. In situ thermal X-ray diffraction was used to study the materials' structural changes in response to temperature variations in air and inert atmosphere. Temperature-programmed reduction was employed to elucidate the relationship between perovskite composition and redox property. O2 sorption performance was evaluated by isothermal analyses at various temperature and p O 2 along with long-term absorption-desorption cycle tests. The high oxygen-sorption capacity was mainly attributed to Co at B-site, whereas partial substitution of Co by Zr enhanced the structural crystallinity and thermal stability of the perovskite. A stable oxygen production of 2.87 wt % was observed at 900 °C during 5 min-sorption cycles for 100 cycles.

4.
ACS Appl Mater Interfaces ; 11(17): 15638-15645, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30977356

RESUMEN

A general, green, efficient, and easily scalable methodology has been developed to more effectively incorporate (disperse) metal-organic frameworks (MOFs) into polymer technologies via solid state synthesis of any MOF nanocrystals within soluble mesoporous polymers. The resulting solid hybrid materials (pellets) can be directly transformed into colloidal MOF polymeric suspensions (inks) by simple dissolution in organic solvents. The straightforward use of novel colloidal MOF polymeric inks as ultimate additive for mixed matrix membranes resulted in unprecedented snakeskin microstructure exhibiting outstanding selectivity for CO2 over N2 (>100) from post-combustion flue gas at very low and well-dispersed MOF nanocrystal concentrations ranging from 1 to 7 wt %. This novel methodology brings one of the most versatile routes yet reported to transform any MOF into more functional forms that can be directly integrated into any conventional polymer technology at the commercial scale.

5.
Nat Commun ; 10(1): 2076, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061386

RESUMEN

Production of 1-butene, a major monomer in polymer industry, is dominated by homogeneous protocols via ethylene dimerization. Homogeneous catalysts can achieve high selectivity but require large amounts of activators and solvents, and exhibit poor recyclability; in turn, heterogeneous systems are robust but lack selectivity. Here we show how the precise engineering of metal-organic frameworks (MOFs) holds promise for a sustainable process. The key to the (Ru)HKUST-1 MOF activity is the intrapore reactant condensation that enhances ethylene dimerization with high selectivity (> 99% 1-butene) and high stability (> 120 h) in the absence of activators and solvents. According to spectroscopy, kinetics, and modeling, the engineering of defective nodes via controlled thermal approaches rules the activity, while intrapore ethylene condensation accounts for selectivity and stability. The combination of well-defined actives sites with the concentration effect arising from condensation regimes paves the way toward the development of robust MOF catalysts for diverse gas-phase reactions.

6.
Chem Sci ; 9(20): 4589-4599, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29899952

RESUMEN

Solid-state synthesis ensures a high loading and well-dispersed growth of a large collection of metal-organic framework (MOF) nanostructures within a series of commercially available mesoporous silica. This approach provides a general, highly efficient, scalable, environmentally friendly, and inexpensive strategy for shaping MOFs into a fluidized form, thereby allowing their application in fluidized-bed reactors for diverse applications, such as CO2 capture from post-combustion flue gas. A collection of polyamine-impregnated MOF/SiO2 hybrid sorbents were evaluated for CO2 capture under simulated flue gas conditions in a packed-bed reactor. Hybrid sorbents containing a moderate loading of (Zn)ZIF-8 are the most promising sorbents in terms of CO2 adsorption capacity and long-term stability (up to 250 cycles in the presence of contaminants: SO2, NO x and H2S) and were successfully prepared at the kilogram scale. These hybrid sorbents demonstrated excellent fluidizability and performance under the relevant process conditions in a visual fluidized-bed reactor. Moreover, a biochemically inspired strategy for covalently linking polyamines to MOF/SiO2 through strong phosphine bonds has been first introduced in this work as a powerful and highly versatile post-synthesis modification for MOF chemistry, thus providing a novel alternative towards more stable CO2 solid sorbents.

7.
Chem Commun (Camb) ; 54(61): 8462-8465, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-29993056

RESUMEN

Well-dispersed nanostructured catalysts along mesoporous materials have been systematically prepared via a novel multistep approach involving either the pyrolysis under nitrogen, the calcination under oxygen or the reduction under hydrogen of MOF nanocrystals decorated with transition metal complexes and previously confined within the mesoporous cavities via novel solid state synthesis. The resulting supported nanostructured catalysts can be composed of metals, metal oxides, heteroatom-doped carbons and combinations thereof depending on the transformation conditions. The pioneering concept of Fluidized-Nanoreactor Hydrogen Carriers has been proposed for the first time by using the resulting nanostructured catalysts within fluidized mesoporous silica.

8.
Chem Commun (Camb) ; (9): 982-4, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16491183

RESUMEN

Stoichiometric reactions of TpRu(CO)(NCMe)(Ph) with electron-rich olefins result in metal-mediated cleavage of C-S and C-O bonds.

9.
J Am Chem Soc ; 129(21): 6765-81, 2007 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-17488072

RESUMEN

Complexes of the type TpRu(L)(NCMe)R [L = CO or PMe3; R = Ph or Me; Tp = hydridotris(pyrazolyl)borate] initiate C-H activation of benzene. Kinetic studies, isotopic labeling, and other experimental evidence suggest that the mechanism of benzene C-H activation involves reversible dissociation of acetonitrile, reversible benzene coordination, and rate-determining C-H activation of coordinated benzene. TpRu(PMe3)(NCMe)Ph initiates C-D activation of C6D6 at rates that are approximately 2-3 times more rapid than that for TpRu(CO)(NCMe)Ph (depending on substrate concentration); however, the catalytic hydrophenylation of ethylene using TpRu(PMe3)(NCMe)Ph is substantially less efficient than catalysis with TpRu(CO)(NCMe)Ph. For TpRu(PMe3)(NCMe)Ph, C-H activation of ethylene, to ultimately produce TpRu(PMe3)(eta3-C4H7), is found to kinetically compete with catalytic ethylene hydrophenylation. In THF solutions containing ethylene, TpRu(PMe3)(NCMe)Ph and TpRu(CO)(NCMe)Ph separately convert to TpRu(L)(eta3-C4H7) (L = PMe3 or CO, respectively) via initial Ru-mediated ethylene C-H activation. Heating mesitylene solutions of TpRu(L)(eta3-C4H7) under ethylene pressure results in the catalytic production of butenes (i.e., ethylene hydrovinylation) and hexenes.

10.
J Am Chem Soc ; 128(24): 7982-94, 2006 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-16771513

RESUMEN

At elevated temperatures (90-130 degrees C), complexes of the type TpRu(PMe3)2X (X = OH, OPh, Me, Ph, or NHPh; Tp = hydridotris(pyrazolyl)borate) undergo regioselective hydrogen-deuterium (H/D) exchange with deuterated arenes. For X = OH or NHPh, H/D exchange occurs at hydroxide and anilido ligands, respectively. For X = OH, OPh, Me, Ph, or NHPh, isotopic exchange occurs at the Tp 4-positions with only minimal deuterium incorporation at the Tp 3- or 5-positions or PMe3 ligands. For TpRu(PMe3)(NCMe)Ph, the H/D exchange occurs at 60 degrees C at all three Tp positions and the phenyl ring. TpRu(PMe3)2Cl, TpRu(PMe3)2OTf (OTf = trifluoromethanesulfonate), and TpRu(PMe3)2SH do not initiate H/D exchange in C6D6 after extended periods of time at elevated temperatures. Mechanistic studies indicate that the likely pathway for the H/D exchange involves ligand dissociation (PMe3 or NCMe), Ru-mediated activation of an aromatic C-D bond, and deuteration of basic nondative ligand (hydroxide or anilido) or Tp positions via net D+ transfer.


Asunto(s)
Deuterio/química , Hidrógeno/química , Metales/química , Compuestos Organometálicos/química , Solventes/química , Compuestos de Cadmio/química , Ligandos , Mesilatos/química , Microscopía Electrónica , Rutenio/química , Compuestos de Selenio/química , Análisis Espectral , Temperatura
11.
J Am Chem Soc ; 127(41): 14174-5, 2005 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-16218598

RESUMEN

TpRu(PMe3)2(OH) (1) reacts with C6D6 to initiate H/D exchange between the hydroxide ligand and the deuterated benzene. In addition, complex 1 catalyzes H/D exchange between H2O and C6D6. Mechanistic and computational studies suggest that a likely reaction pathway for the H/D exchange involves loss of PMe3 to produce {TpRu(PMe3)(OH)}, followed by the net addition of a benzene C-H(D) bond across the Ru-OH bond to form the putative complex TpRu(PMe3)(OH2)(Ph).


Asunto(s)
Hidróxidos/química , Compuestos Organometálicos/síntesis química , Rutenio/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/química
12.
J Am Chem Soc ; 125(25): 7506-7, 2003 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-12812477

RESUMEN

TpRuII(CO)(Me)(NCMe) (Tp = hydridotris(pyrazolyl)borate) serves as a catalyst precursor for the conversion of benzene and ethylene or propene to alkylaromatic products. The reaction proceeds via the formation of the active catalyst TpRu(CO)(Ph)(NCMe) and is mildly selective for linear propylbenzene over isopropylbenzene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA