Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Hered ; 115(1): 149-154, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-37791665

RESUMEN

The northern bat (Eptesicus nilssonii) is the most northern bat species in the world. Its distribution covers whole Eurasia, and the species is thus well adapted to different habitat types. However, recent population declines have been reported and rapid conservation efforts are needed. Here we present a high-quality de novo genome assembly of a female northern bat from Finland (BLF_Eptnil_asm_v1.0). The assembly was generated using a combination of Pacbio and Omni-C technologies. The primary assembly comprises 726 scaffolds spanning 2.0 Gb, represented by a scaffold N50 of 102 Mb, a contig N50 of 66.2 Mb, and a BUSCO completeness score of 93.73%. Annotation of the assembly identified 20,250 genes. This genome will be an important resource for the conservation and evolutionary genomic studies especially in understanding how rapid environmental changes affect northern species.


Asunto(s)
Quirópteros , Animales , Femenino , Quirópteros/genética , Genoma , Genómica , Evolución Biológica , Cromosomas
2.
BMC Genomics ; 22(1): 36, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413102

RESUMEN

BACKGROUND: DNA methylation is likely a key mechanism regulating changes in gene transcription in traits that show temporal fluctuations in response to environmental conditions. To understand the transcriptional role of DNA methylation we need simultaneous within-individual assessment of methylation changes and gene expression changes over time. Within-individual repeated sampling of tissues, which are essential for trait expression is, however, unfeasible (e.g. specific brain regions, liver and ovary for reproductive timing). Here, we explore to what extend between-individual changes in DNA methylation in a tissue accessible for repeated sampling (red blood cells (RBCs)) reflect such patterns in a tissue unavailable for repeated sampling (liver) and how these DNA methylation patterns are associated with gene expression in such inaccessible tissues (hypothalamus, ovary and liver). For this, 18 great tit (Parus major) females were sacrificed at three time points (n = 6 per time point) throughout the pre-laying and egg-laying period and their blood, hypothalamus, ovary and liver were sampled. RESULTS: We simultaneously assessed DNA methylation changes (via reduced representation bisulfite sequencing) and changes in gene expression (via RNA-seq and qPCR) over time. In general, we found a positive correlation between changes in CpG site methylation in RBCs and liver across timepoints. For CpG sites in close proximity to the transcription start site, an increase in RBC methylation over time was associated with a decrease in the expression of the associated gene in the ovary. In contrast, no such association with gene expression was found for CpG site methylation within the gene body or the 10 kb up- and downstream regions adjacent to the gene body. CONCLUSION: Temporal changes in DNA methylation are largely tissue-general, indicating that changes in RBC methylation can reflect changes in DNA methylation in other, often less accessible, tissues such as the liver in our case. However, associations between temporal changes in DNA methylation with changes in gene expression are mostly tissue- and genomic location-dependent. The observation that temporal changes in DNA methylation within RBCs can relate to changes in gene expression in less accessible tissues is important for a better understanding of how environmental conditions shape traits that temporally change in expression in wild populations.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Islas de CpG , Metilación de ADN , Femenino , Passeriformes/genética , ARN , Reproducción , Pájaros Cantores/genética
3.
Mol Ecol ; 30(15): 3645-3659, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33453134

RESUMEN

Species with a circannual life cycle need to match the timing of their life history events to the environment to maximize fitness. However, our understanding of how circannual traits such as timing of reproduction are regulated on a molecular level remains limited. Recent studies have implicated that epigenetic mechanisms can be an important part in the processes that regulate circannual traits. Here, we explore the role of DNA methylation in mediating reproductive timing in a seasonally breeding bird species, the great tit (Parus major), using genome-wide DNA methylation data from individual females that were blood sampled repeatedly throughout the breeding season. We demonstrate rapid and directional changes in DNA methylation within the promoter region of several genes, including a key transcription factor (NR5A1) known from earlier studies to be involved in the initiation of timing of reproduction. Interestingly, the observed changes in DNA methylation at NR5A1 identified here are in line with earlier gene expression studies of reproduction in chicken, indicating that the observed shifts in DNA methylation at this gene can have a regulatory role. Our findings provide an important step towards elucidating the genomic mechanism that mediates seasonal timing of a key life history traits and provide support for the idea that epigenetic mechanisms may play an important role in circannual traits.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Metilación de ADN , Epigénesis Genética , Femenino , Reproducción/genética , Estaciones del Año , Pájaros Cantores/genética
4.
Environ Sci Technol ; 55(13): 8947-8954, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34110128

RESUMEN

Pollutants, such as toxic metals, negatively influence organismal health and performance, even leading to population collapses. Studies in model organisms have shown that epigenetic marks, such as DNA methylation, can be modulated by various environmental factors, including pollutants, influencing gene expression, and various organismal traits. Yet experimental data on the effects of pollution on DNA methylation from wild animal populations are largely lacking. We here experimentally investigated for the first time the effects of early-life exposure to environmentally relevant levels of a key pollutant, arsenic (As), on genome-wide DNA methylation in a wild bird population. We experimentally exposed nestlings of great tits (Parus major) to arsenic during their postnatal developmental period (3 to 14 days post-hatching) and compared their erythrocyte DNA methylation levels to those of respective controls. In contrast to predictions, we found no overall hypomethylation in the arsenic group. We found evidence for loci to be differentially methylated between the treatment groups, but for five CpG sites only. Three of the sites were located in gene bodies of zinc finger and BTB domain containing 47 (ZBTB47), HIVEP zinc finger 3 (HIVEP3), and insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1). Further studies are needed to evaluate whether epigenetic dysregulation is a commonly observed phenomenon in polluted populations and what are the consequences for organism functioning and for population dynamics.


Asunto(s)
Arsénico , Contaminantes Ambientales , Animales , Animales Salvajes , Arsénico/toxicidad , Aves/genética , Metilación de ADN , Contaminantes Ambientales/toxicidad
5.
BMC Genomics ; 20(1): 693, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477015

RESUMEN

BACKGROUND: Seasonal timing of breeding is a life history trait with major fitness consequences but the genetic basis of the physiological mechanism underlying it, and how gene expression is affected by date and temperature, is not well known. In order to study this, we measured patterns of gene expression over different time points in three different tissues of the hypothalamic-pituitary-gonadal-liver axis, and investigated specifically how temperature affects this axis during breeding. We studied female great tits (Parus major) from lines artificially selected for early and late timing of breeding that were housed in two contrasting temperature environments in climate-controlled aviaries. We collected hypothalamus, liver and ovary samples at three different time points (before and after onset of egg-laying). For each tissue, we sequenced whole transcriptomes of 12 pools (n = 3 females) to analyse gene expression. RESULTS: Birds from the selection lines differed in expression especially for one gene with clear reproductive functions, zona pellucida glycoprotein 4 (ZP4), which has also been shown to be under selection in these lines. Genes were differentially expressed at different time points in all tissues and most of the differentially expressed genes between the two temperature treatments were found in the liver. We identified a set of hub genes from all the tissues which showed high association to hormonal functions, suggesting that they have a core function in timing of breeding. We also found ample differentially expressed genes with largely unknown functions in birds. CONCLUSIONS: We found differentially expressed genes associated with selection line and temperature treatment. Interestingly, the latter mainly in the liver suggesting that temperature effects on egg-laying date may happen down-stream in the physiological pathway. These findings, as well as our datasets, will further the knowledge of the mechanisms of tissue-specific avian seasonality in the future.


Asunto(s)
Regulación de la Expresión Génica , Reproducción/genética , Pájaros Cantores/genética , Animales , Cruzamiento , Femenino , Ontología de Genes , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Hígado/metabolismo , Especificidad de Órganos , Ovario/metabolismo , Reproducción/fisiología , Pájaros Cantores/metabolismo , Temperatura , Factores de Tiempo , Transcriptoma
6.
BMC Genomics ; 20(1): 19, 2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30621573

RESUMEN

BACKGROUND: A widely used approach in next-generation sequencing projects is the alignment of reads to a reference genome. Despite methodological and hardware improvements which have enhanced the efficiency and accuracy of alignments, a significant percentage of reads frequently remain unmapped. Usually, unmapped reads are discarded from the analysis process, but significant biological information and insights can be uncovered from these data. We explored the unmapped DNA (normal and bisulfite treated) and RNA sequence reads of the great tit (Parus major) reference genome individual. From the unmapped reads we generated de novo assemblies, after which the generated sequence contigs were aligned to the NCBI non-redundant nucleotide database using BLAST, identifying the closest known matching sequence. RESULTS: Many of the aligned contigs showed sequence similarity to different bird species and genes that were absent in the great tit reference assembly. Furthermore, there were also contigs that represented known P. major pathogenic species. Most interesting were several species of blood parasites such as Plasmodium and Trypanosoma. CONCLUSIONS: Our analyses revealed that meaningful biological information can be found when further exploring unmapped reads. For instance, it is possible to discover sequences that are either absent or misassembled in the reference genome, and sequences that indicate infection or sample contamination. In this study we also propose strategies to aid the capture and interpretation of this information from unmapped reads.


Asunto(s)
ADN/genética , Genoma/genética , ARN/genética , Pájaros Cantores/genética , Animales , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Alineación de Secuencia
7.
J Exp Biol ; 222(Pt 17)2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31371403

RESUMEN

The timing of breeding is under selection in wild populations as a result of climate change, and understanding the underlying physiological processes mediating this timing provides insight into the potential rate of adaptation. Current knowledge on this variation in physiology is, however, mostly limited to males. We assessed whether individual differences in the timing of breeding in females are reflected in differences in candidate gene expression and, if so, whether these differences occur in the upstream (hypothalamus) or downstream (ovary and liver) parts of the neuroendocrine system. We used 72 female great tits from two generations of lines artificially selected for early and late egg laying, which were housed in climate-controlled aviaries and went through two breeding cycles within 1 year. In the first breeding season we obtained individual egg-laying dates, while in the second breeding season, using the same individuals, we sampled several tissues at three time points based on the timing of the first breeding attempt. For each tissue, mRNA expression levels were measured using qPCR for a set of candidate genes associated with the timing of reproduction and subsequently analysed for differences between generations, time points and individual timing of breeding. We found differences in gene expression between generations in all tissues, with the most pronounced differences in the hypothalamus. Differences between time points, and early- and late-laying females, were found exclusively in the ovary and liver. Altogether, we show that fine-tuning of the seasonal timing of breeding, and thereby the opportunity for adaptation in the neuroendocrine system, is regulated mostly downstream in the neuro-endocrine system.


Asunto(s)
Expresión Génica , Comportamiento de Nidificación , Reproducción , Pájaros Cantores/fisiología , Animales , Variación Biológica Individual , Femenino , Hipotálamo/fisiología , Hígado/fisiología , Ovario/fisiología , Estaciones del Año , Pájaros Cantores/genética
8.
BMC Genomics ; 19(1): 195, 2018 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-29703149

RESUMEN

BACKGROUND: Understanding variation in genome structure is essential to understand phenotypic differences within populations and the evolutionary history of species. A promising form of this structural variation is copy number variation (CNV). CNVs can be generated by different recombination mechanisms, such as non-allelic homologous recombination, that rely on specific characteristics of the genome architecture. These structural variants can therefore be more abundant at particular genes ultimately leading to variation in phenotypes under selection. Detailed characterization of CNVs therefore can reveal evolutionary footprints of selection and provide insight in their contribution to phenotypic variation in wild populations. RESULTS: Here we use genotypic data from a long-term population of great tits (Parus major), a widely studied passerine bird in ecology and evolution, to detect CNVs and identify genomic features prevailing within these regions. We used allele intensities and frequencies from high-density SNP array data from 2,175 birds. We detected 41,029 CNVs concatenated into 8,008 distinct CNV regions (CNVRs). We successfully validated 93.75% of the CNVs tested by qPCR, which were sampled at different frequencies and sizes. A mother-daughter family structure allowed for the evaluation of the inheritance of a number of these CNVs. Thereby, only CNVs with 40 probes or more display segregation in accordance with Mendelian inheritance, suggesting a high rate of false negative calls for smaller CNVs. As CNVRs are a coarse-grained map of CNV loci, we also inferred the frequency of coincident CNV start and end breakpoints. We observed frequency-dependent enrichment of these breakpoints at homologous regions, CpG sites and AT-rich intervals. A gene ontology enrichment analyses showed that CNVs are enriched in genes underpinning neural, cardiac and ion transport pathways. CONCLUSION: Great tit CNVs are present in almost half of the genes and prominent at repetitive-homologous and regulatory regions. Although overlapping genes under selection, the high number of false negatives make neutrality or association tests on CNVs detected here difficult. Therefore, CNVs should be further addressed in the light of their false negative rate and architecture to improve the comprehension of their association with phenotypes and evolutionary history.


Asunto(s)
Variaciones en el Número de Copia de ADN , Redes Reguladoras de Genes , Pájaros Cantores/genética , Animales , Proteínas Aviares/genética , Evolución Molecular , Femenino , Frecuencia de los Genes , Masculino , Herencia Materna , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética
9.
Mol Ecol ; 25(7): 1581-94, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26841188

RESUMEN

Optimal foraging theory predicts that predators are selective when faced with abundant prey, but become less picky when prey gets sparse. Insectivorous bats in temperate regions are faced with the challenge of building up fat reserves vital for hibernation during a period of decreasing arthropod abundances. According to optimal foraging theory, prehibernating bats should adopt a less selective feeding behavior--yet empirical studies have revealed many apparently generalized species to be composed of specialist individuals. Targeting the diet of the bat Myotis daubentonii, we used a combination of molecular techniques to test for seasonal changes in prey selectivity and individual-level variation in prey preferences. DNA metabarcoding was used to characterize both the prey contents of bat droppings and the insect community available as prey. To test for dietary differences among M. daubentonii individuals, we used ten microsatellite loci to assign droppings to individual bats. The comparison between consumed and available prey revealed a preference for certain prey items regardless of availability. Nonbiting midges (Chironomidae) remained the most highly consumed prey at all times, despite a significant increase in the availability of black flies (Simuliidae) towards the end of the season. The bats sampled showed no evidence of individual specialization in dietary preferences. Overall, our approach offers little support for optimal foraging theory. Thus, it shows how novel combinations of genetic markers can be used to test general theory, targeting patterns at both the level of prey communities and individual predators.


Asunto(s)
Quirópteros/genética , Código de Barras del ADN Taxonómico , Conducta Alimentaria , Insectos/clasificación , Conducta Predatoria , Animales , Chironomidae , Quirópteros/fisiología , Dieta/veterinaria , Heces , Femenino , Genotipo , Insectos/genética , Masculino , Repeticiones de Microsatélite , Estaciones del Año , Análisis de Secuencia de ADN , Simuliidae
10.
Behav Genet ; 44(1): 77-88, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24190427

RESUMEN

The genetic architecture of behavioral traits is yet relatively poorly understood in most non-model organisms. Using an F2-intercross (n = 283 offspring) between behaviorally divergent nine-spined stickleback (Pungitius pungitius) populations, we tested for and explored the genetic basis of different behavioral traits with the aid of quantitative trait locus (QTL) analyses based on 226 microsatellite markers. The behaviors were analyzed both separately (viz. feeding activity, risk-taking and exploration) and combined in order to map composite behavioral type. Two significant QTL-explaining on average 6 % of the phenotypic variance-were detected for composite behavioral type on the experiment-wide level, located on linkage groups 3 and 8. In addition, several suggestive QTL located on six other linkage groups were detected on the chromosome-wide level. Apart from providing evidence for the genetic basis of behavioral variation, the results provide a good starting point for finer-scale analyses of genetic factors influencing behavioral variation in the nine-spined stickleback.


Asunto(s)
Conducta Animal/fisiología , Peces/genética , Sitios de Carácter Cuantitativo/genética , Animales , Femenino , Ligamiento Genético/genética , Genotipo , Masculino , Repeticiones de Microsatélite/genética
11.
Evol Appl ; 17(7): e13703, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38948539

RESUMEN

Anthropogenic climate change has led to globally increasing temperatures at an unprecedented pace and, to persist, wild species have to adapt to their changing world. We, however, often fail to derive reliable predictions of species' adaptive potential. Genomic selection represents a powerful tool to investigate the adaptive potential of a species, but constitutes a 'blind process' with regard to the underlying genomic architecture of the relevant phenotypes. Here, we used great tit (Parus major) females from a genomic selection experiment for avian lay date to zoom into this blind process. We aimed to identify the genetic variants that responded to genomic selection and epigenetic variants that accompanied this response and, this way, might reflect heritable genetic variation at the epigenetic level. We applied whole genome bisulfite sequencing to blood samples of individual great tit females from the third generation of bidirectional genomic selection lines for early and late lay date. Genomic selection resulted in differences at both the genetic and epigenetic level. Genetic variants that showed signatures of selection were located within genes mostly linked to brain development and functioning, including LOC107203824 (SOX3-like). SOX3 is a transcription factor that is required for normal hypothalamo-pituitary axis development and functioning, an essential part of the reproductive axis. As for epigenetic differentiation, the early selection line showed hypomethylation relative to the late selection line. Sites with differential DNA methylation were located in genes important for various biological processes, including gonadal functioning (e.g., MSTN and PIK3CB). Overall, genomic selection for avian lay date provided insights into where within the genome the heritable genetic variation for lay date, on which selection can operate, resides and indicates that some of this variation might be reflected by epigenetic variants.

12.
Evol Lett ; 8(1): 18-28, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370545

RESUMEN

The recognition that climate change is occurring at an unprecedented rate means that there is increased urgency in understanding how organisms can adapt to a changing environment. Wild great tit (Parus major) populations represent an attractive ecological model system to understand the genomics of climate adaptation. They are widely distributed across Eurasia and they have been documented to respond to climate change. We performed a Bayesian genome-environment analysis, by combining local climate data with single nucleotide polymorphisms genotype data from 20 European populations (broadly spanning the species' continental range). We found 36 genes putatively linked to adaptation to climate. Following an enrichment analysis of biological process Gene Ontology (GO) terms, we identified over-represented terms and pathways among the candidate genes. Because many different genes and GO terms are associated with climate variables, it seems likely that climate adaptation is polygenic and genetically complex. Our findings also suggest that geographical climate adaptation has been occurring since great tits left their Southern European refugia at the end of the last ice age. Finally, we show that substantial climate-associated genetic variation remains, which will be essential for adaptation to future changes.

13.
Mol Ecol Resour ; 24(5): e13969, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38747336

RESUMEN

A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.


Asunto(s)
Variación Genética , Polimorfismo de Nucleótido Simple , Pájaros Cantores , Animales , Pájaros Cantores/genética , Pájaros Cantores/clasificación , Genética de Población/métodos , Europa (Continente) , Passeriformes/genética , Passeriformes/clasificación , Haplotipos/genética , Recombinación Genética , Selección Genética
14.
Mol Ecol ; 22(23): 5861-76, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24102814

RESUMEN

Body size is an ecologically important trait shown to be genetically variable both within and among different animal populations as revealed by quantitative genetic studies. However, few studies have looked into underlying genetic architecture of body size variability in the wild using genetic mapping methods. With the aid of quantitative trait loci (QTL) analyses based on 226 microsatellite markers, we mapped body size and growth rate traits in the nine-spined stickleback (Pungitius pungitius) using an F2 -intercross (n = 283 offspring) between size-divergent populations. In total, 17 QTL locations were detected. The proportion of phenotypic variation explained by individual body size-related QTL ranged from 3% to 12% and those related to growth parameters and increments from 3% to 10%. Several of the detected QTL affected either early or late growth. These results provide a solid starting point for more in depth investigations of structure and function of genomic regions involved in determination of body size in this popular model of ecological and evolutionary research.


Asunto(s)
Tamaño Corporal/genética , Sitios de Carácter Cuantitativo , Smegmamorpha/crecimiento & desarrollo , Smegmamorpha/genética , Animales , Mapeo Cromosómico , Ligamiento Genético , Genética de Población , Repeticiones de Microsatélite
15.
Mol Ecol Resour ; 23(7): 1488-1508, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35466564

RESUMEN

The field of molecular biology is advancing fast with new powerful technologies, sequencing methods and analysis software being developed constantly. Commonly used tools originally developed for research on humans and model species are now regularly used in ecological and evolutionary research. There is also a growing interest in the causes and consequences of epigenetic variation in natural populations. Studying ecological epigenetics is currently challenging, especially for vertebrate systems, because of the required technical expertise, complications with analyses and interpretation, and limitations in acquiring sufficiently high sample sizes. Importantly, neglecting the limitations of the experimental setup, technology and analyses may affect the reliability and reproducibility, and the extent to which unbiased conclusions can be drawn from these studies. Here, we provide a practical guide for researchers aiming to study DNA methylation variation in wild vertebrates. We review the technical aspects of epigenetic research, concentrating on DNA methylation using bisulfite sequencing, discuss the limitations and possible pitfalls, and how to overcome them through rigid and reproducible data analysis. This review provides a solid foundation for the proper design of epigenetic studies, a clear roadmap on the best practices for correct data analysis and a realistic view on the limitations for studying ecological epigenetics in vertebrates. This review will help researchers studying the ecological and evolutionary implications of epigenetic variation in wild populations.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Animales , Humanos , Reproducibilidad de los Resultados , Vertebrados/genética , Ecología
16.
Genome Biol Evol ; 15(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36546695

RESUMEN

Understanding mechanisms involved in speciation can be challenging, especially when hybridization or introgression blurs species boundaries. In bats, resolving relationships of some closely related groups has proved difficult due subtle interspecific variation both in morphometrics and molecular data sets. The endemic South American Histiotus bats, currently considered a subgenus of Eptesicus, harbor unresolved phylogenetic relationships and of those is a trio consisting of two closely related species: Eptesicus (Histiotus) macrotus and Eptesicus (Histiotus) montanus, and their relationship with a third, Eptesicus (Histiotus) magellanicus. The three sympatric species bear marked resemblance to each other, but can be differentiated morphologically. Furthermore, previous studies have been unable to differentiate the species from each other at a molecular level. In order to disentangle the phylogenetic relationships of these species, we examined the differentiation patterns and evolutionary history of the three Eptesicus (H.) species at the whole-genome level. The nuclear DNA statistics between the species suggest strong gene flow and recent hybridization between E. (H.) montanus and E. (H.) macrotus, whereas E. (H.) magellanicus shows a higher degree of isolation. In contrast, mitochondrial DNA shows a closer relationship between E. (H.) magellanicus and E. (H.) montanus. Opposing patterns in mtDNA and nuclear markers are often due to differences in dispersal, and here it could be both as a result of isolation in refugia during the last glacial maximum and female philopatry and male-biased dispersal. In conclusion, this study shows the importance of both the nuclear and mitochondrial DNA in resolving phylogenetic relationships and species histories.


Asunto(s)
Quirópteros , Genoma Mitocondrial , Animales , Femenino , Masculino , Filogenia , Quirópteros/genética , Simpatría , ADN Mitocondrial/genética , Análisis de Secuencia de ADN
17.
Mol Ecol ; 21(19): 4872-84, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22938054

RESUMEN

The study of heterozygosity-fitness correlations (HFCs) has a long history in the fields of ecology and evolutionary biology but remains controversial. Recently, it has been shown that the genetic distance of markers from functional loci can be an important factor to be considered in addition to marker numbers and variability. In this study, we investigated the correlation between individual heterozygosity and behaviour (aggression, boldness and feeding activity) in nine-spined stickleback (Pungitius pungitius) individuals originating from four populations in two contrasting environments. Offspring of full-sib families raised in a common garden setting were assessed for behaviour and genotyped using 84 microsatellite markers that were either located within or near behaviourally or physiologically important genes (termed 'functional') or were randomly selected. No associations were detected with any behavioural trait in any population or over all populations when genetic variability was measured using all 84 markers combined. However, when the markers were separated into three functional categories (behavioural, physiological and random), several significant associations were observed both with functional markers and random markers in one of the four populations assessed. Interestingly, contrasting correlations with behaviour were observed when using physiological gene (negative) and random (positive) markers. Upon dividing the physiological gene markers into further subcategories based on their specific physiological functions, a strong relationship between the heterozygosity of markers linked to osmoregulation-related genes, and behaviour was revealed in the brackish water population. Our results indicate that both local (physiological) and general (neutral) effects are important in shaping behaviour and that heterozygosity-behaviour correlations are population dependent.


Asunto(s)
Conducta Animal , Heterocigoto , Smegmamorpha/genética , Animales , Marcadores Genéticos , Genotipo , Repeticiones de Microsatélite , Modelos Genéticos , Análisis de Secuencia de ADN , Smegmamorpha/fisiología
18.
Environ Sci Technol ; 46(13): 7382-9, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22680406

RESUMEN

Chironomids play an important role in the detritus cycle and as a component in brackish- and freshwater benthic and terrestrial food webs. If TBT is present in their environment, then they may accumulate tributyltin (TBT) during their juvenile period, which negatively affects many of their life history characteristics. The aim of this experiment is to test the effects of three TBT sediment concentrations (nominal 30, 90, and 180 µg/kg) on life history traits (development time, survival, fecundity, and weight) and immune response (number of hemocytes and phenoloxidase activity) of the nonbiting midge, Chironomus riparius. These responses were recorded immediately after one generation of TBT exposure, and in the long run during five consecutive generations. We also assessed recovery from pollution after four generations of TBT exposure. In a single generation, TBT affected all measured parameters, except phenoloxidase activity, when compared to the control. Long-term-effects of TBT lead to extinction of all treatments after the fifth generation. Again, all measured variables significantly differ from the control, although TBT had varying effects on the measured variables. Most of the effects of TBT on population viability were not evident during recovery, once TBT was removed from the sediment. The effect of previous TBT contamination was observed only in delayed larval development, suggesting that TBT has only limited maternal/epigenetic effects on individual condition. However, altered schedules in the life-cycle can have unexpected ecological impacts. TBT decreases the viability of Chironomus riparius and the effect will become stronger if exposure to TBT continues for many generations. Yet, the harmful effect of TBT disappears quickly as the TBT is removed from the environment.


Asunto(s)
Chironomidae/fisiología , Compuestos de Trialquiltina/inmunología , Contaminantes Químicos del Agua/inmunología , Animales , Chironomidae/crecimiento & desarrollo , Chironomidae/inmunología , Sedimentos Geológicos/análisis , Estadios del Ciclo de Vida , Compuestos de Trialquiltina/análisis , Contaminantes Químicos del Agua/análisis
19.
Genetics ; 220(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34888647

RESUMEN

Bdelloid rotifers, common freshwater invertebrates of ancient origin and worldwide distribution have long been thought to be entirely asexual, being the principal exception to the view that in eukaryotes the loss of sex leads to early extinction. That bdelloids are facultatively sexual is shown by a study of allele sharing within a group of closely related bdelloids of the species Macrotrachella quadricornifera, supporting the view that sexual reproduction is essential for long-term success in all eukaryotes.


Asunto(s)
Rotíferos , Alelos , Animales , Genómica , Reproducción/genética , Reproducción Asexuada/genética , Rotíferos/genética
20.
Mol Ecol Resour ; 22(2): 834-846, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34435438

RESUMEN

The profiling of epigenetic marks like DNA methylation has become a central aspect of studies in evolution and ecology. Bisulphite sequencing is commonly used for assessing genome-wide DNA methylation at single nucleotide resolution but these data can also provide information on genetic variants like single nucleotide polymorphisms (SNPs). However, bisulphite conversion causes unmethylated cytosines to appear as thymines, complicating the alignment and subsequent SNP calling. Several tools have been developed to overcome this challenge, but there is no independent evaluation of such tools for non-model species, which often lack genomic references. Here, we used whole-genome bisulphite sequencing (WGBS) data from four female great tits (Parus major) to evaluate the performance of seven tools for SNP calling from bisulphite sequencing data. We used SNPs from whole-genome resequencing data of the same samples as baseline SNPs to assess common performance metrics like sensitivity, precision, and the number of true positive, false positive, and false negative SNPs for the full range of variant and genotype quality values. We found clear differences between the tools in either optimizing precision (Bis-SNP), sensitivity (biscuit), or a compromise between both (all other tools). Overall, the choice of SNP caller strongly depends on which performance parameter should be maximized and whether ascertainment bias should be minimized to optimize downstream analysis, highlighting the need for studies that assess such differences.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Pájaros Cantores/genética , Sulfitos , Animales , Femenino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA