Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Chem Rev ; 123(13): 8044-8068, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37249405

RESUMEN

Research into strong light-matter interactions continues to fascinate, being spurred on by unforeseen and often spectacular experimental observations. Properties that were considered to depend exclusively on material composition have been found to be drastically altered when a material is placed inside a resonant optical cavity. This is nowhere more the case than in the field of intermolecular energy transfer, where polaritonic states formed as a result of strong light-matter interactions have been shown to promote energy transfer over distances vastly exceeding conventional limits. In this review, we provide the reader with a succinct account of the fundamental concepts of intermolecular energy transfer, and how they are modified by strong light-matter interactions. We also summarize recent experimental advances in the area, including in optoelectronic device contexts, and highlight both the potential and challenges that remain in this exciting field of research going forward.

2.
Chem Soc Rev ; 52(10): 3567-3590, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37161868

RESUMEN

Recently, there has been significant interest in the use of chiral metal-organic frameworks (MOFs) and coordination polymers (CPs) for photonics applications. The promise of these materials lies in the ability to tune their properties through judicious selection of the metal and ligand components. Additionally, the interaction of guest species with the host framework can be exploited to realise new functionalities. In this review, we outline the methods for synthesising chiral MOFs and CPs, then analyse the recent innovations in their use for various optical and photonics applications. We focus on two emerging directions in the field of MOF chemistry - circularly polarised luminescence (CPL) and chiroptical switching - as well as the latest developments in the use of these materials for second-order nonlinear optics (NLO), particularly second-harmonic generation (SHG). The current challenges encountered so far, their possible solutions, and key directions for further research are also outlined. Overall, given the results demonstrated to date, chiral MOFs and CPs show great promise for use in future technologies such as optical communication and computing, optical displays, and all-optical devices.

3.
J Phys Chem A ; 125(33): 7226-7234, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34433272

RESUMEN

Molecular chirality can be exploited as a sensitive reporter of the nature of intra- and interchromophore interactions in π-conjugated systems. In this report, we designed an intramolecular singlet fission (iSF)-based pentacene dimer with an axially chiral binaphthyl bridge (2,2'-(2,2'-dimethoxy-[1,1'-binaphthalene]-3,3'-diyl) n-octyl-di-isopropyl silylethynyl dipentacene, BNBP) to utilize its chiroptical response as a marker of iSF chromophore-bridge-chromophore (SFC-ß-SFC) interactions. The axial chirality of the bridge enforces significant one-handed excitonic coupling of the pentacene monomer units; as such, BNBP exhibits significant chiroptical response in the ground and excited states. We analyzed the chiroptical response of BNBP using the exciton coupling method and quadratic response density functional theory calculations to reveal that higher energy singlet transitions in BNBP involve significant delocalization of the electronic density on the bridging binaphthyl group. Our results highlight the promising application of chiroptical techniques to investigate the nature of SFC-ß-SFC interactions that impact singlet fission dynamics.

4.
Chirality ; 33(10): 610-617, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34464472

RESUMEN

Large magnetic optical rotary dispersion (Faraday rotation) has been demonstrated recently in methylammonium lead bromide. Here, we investigate the prospect of extending the active spectral range by altering the halogen. We also investigate the origins of large Faraday rotation in these diamagnetic materials using magnetic circular dichroism (MCD) spectroscopy and the Kramers-Kronig relations. We find that, while MAPbCl3 (MA = methylammonium) single crystals exhibit a large Verdet constant in the blue, no appreciable Faraday rotation is observed in the red/near infra-red for MAPbI3 single crystals. However, in all film samples, we find clear evidence of large MCD resulting from the Zeeman splitting of the highly resonant 1s exciton state. Our Kramers-Kronig calculations of Faraday rotation based on MCD data matches well with the dispersion of our experimental data for MAPbCl3 and MAPbBr3 , with some deviation in magnitude-demonstrating the excitonic nature of Faraday rotation in these materials. However, our calculations predict significant Faraday rotation in MAPbI3 , contrary to our experimental results, indicating a potential discrepancy between the properties of the thin film and single crystal.

5.
J Chem Phys ; 145(19): 194703, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27875898

RESUMEN

A theory for the reflection of light by molecular crystals is described, which reproduces the minimum within the reflection band that is observed experimentally. The minimum in reflection is related to the excitation of polaritons in the crystal. The theory involves reformulation of the boundary conditions for electromagnetic waves at the interface between vacuum and material. The material is modeled by a cubic lattice of oriented Lorentz oscillators. By requiring uniformity of gauge of the electromagnetic potential across the interface between vacuum and the dipole lattice, the need for additional boundary conditions is obviated. The frequency separation between the maxima in reflectance on both sides of the minimum allows for the extraction of a plasma frequency. The plasma frequencies extracted from reflection spectra are compared to the plasma frequencies calculated directly from structural data on the crystals and the oscillator strengths of the constituent molecules. A good agreement between extracted and calculated plasma frequency is obtained for a set of 11 dye molecules.

6.
Nano Lett ; 15(2): 931-5, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25585168

RESUMEN

We present a novel experimental approach which allows extraction of both spatial and temporal information on charge dynamics in organic solar cells. Using the wavelength dependence of the photonic structure in these devices, we monitor the change in spatial overlap between the photogenerated hole distribution and the optical probe profile as a function of time. In a model system we find evidence for a buildup of the photogenerated hole population close to the hole-extracting electrode on a nanosecond time scale and show that this can limit charge transport through space-charge effects under operating conditions.


Asunto(s)
Procesos Fotoquímicos , Energía Solar , Electrodos
7.
Annu Rev Phys Chem ; 65: 557-81, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24423376

RESUMEN

The recombination of electrons and holes is a major loss mechanism in photovoltaic devices that controls their performance. We review scientific literature on bimolecular recombination (BR) in bulk heterojunction organic photovoltaic devices to bring forward existing ideas on the origin and nature of BR and highlight both experimental and theoretical work done to quantify its extent. For these systems, Langevin theory fails to explain BR, and recombination dynamics turns out to be dependent on mobility, temperature, electric field, charge carrier concentration, and trapped charges. Relationships among the photocurrent, open-circuit voltage, fill factor, and morphology are discussed. Finally, we highlight the recent emergence of a molecular-level picture of recombination, taking into account the spin and delocalization of charges. Together with the macroscopic picture of recombination, these new insights allow for a comprehensive understanding of BR and provide design principles for future materials and devices.


Asunto(s)
Electrónica/instrumentación , Fulerenos/química , Fotoquímica/instrumentación , Electrones , Luz , Semiconductores
8.
Nanoscale ; 15(13): 6126-6142, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36939532

RESUMEN

We report, for the first time, sub-4 nm mapping of donor : acceptor nanoparticle composition in eco-friendly colloidal dispersions for organic electronics. Low energy scanning transmission electron microscopy (STEM) energy dispersive X-ray spectroscopy (EDX) mapping has revealed the internal morphology of organic semiconductor donor : acceptor blend nanoparticles at the sub-4 nm level. A unique element was available for utilisation as a fingerprint element to differentiate donor from acceptor material in each blend system. Si was used to map the location of donor polymer PTzBI-Si in PTzBI-Si:N2200 nanoparticles, and S (in addition to N) was used to map donor polymer TQ1 in TQ1:PC71BM nanoparticles. For select material blends, synchrotron-based scanning transmission X-ray microscopy (STXM), was demonstrated to remain as the superior chemical contrast technique for mapping organic donor : acceptor morphology, including for material combinations lacking a unique fingerprint element (e.g. PTQ10:Y6), or systems where the unique element is in a terminal functional group (unsaturated, dangling bonds) and can hence be easily damaged under the electron beam, e.g. F on PTQ10 donor polymer in the PTQ10:IDIC donor : acceptor blend. We provide both qualitative and quantitative compositional mapping of organic semiconductor nanoparticles with STEM EDX, with sub-domains resolved in nanoparticles as small as 30 nm in diameter. The sub-4 nm mapping technology reported here shows great promise for the optimisation of organic semiconductor blends for applications in organic electronics (solar cells and bioelectronics) and photocatalysis, and has further applications in organic core-shell nanomedicines.

9.
J Phys Chem A ; 116(4): 1121-8, 2012 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-22148235

RESUMEN

The Maugin-Oseen-DeVries theory accounts for chiroptical properties of cholesteric films with long-range order. For molecular systems with short-range structural correlation lengths, molecular exciton theory is used. A consistent description for systems with intermediate correlation lengths is lacking. Films of chiral polyfluorene behave according to Maugin-Oseen-DeVries theory when the film thickness exceeds 300 nm. Properties of thin films are consistent with molecular exciton theory. We describe the crossover in the optical properties of the film in a phenomenological way using a dielectric tensor that contains terms from Maugin-Oseen-DeVries and molecular exciton theory. Guided by the experimental findings, we explore the possibility of a unification of the Maugin-Oseen-DeVries and molecular exciton theory involving a coupled oscillator model.


Asunto(s)
Fluorenos/química , Cristales Líquidos/química , Polímeros/química , Teoría Cuántica , Membranas Artificiales , Modelos Químicos
10.
Sci Rep ; 12(1): 22189, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564483

RESUMEN

Lasing is observed in Bragg lasers formed through conformal contact of a patterned PDMS stamp with a plain active film, spincoated on glass. The thresholds, output efficiencies and spectral characteristics are compared to standard substrate patterned gratings and is discussed in relation to the coupling coefficient [Formula: see text]. The reported thresholds are highly sensitive in distributed feedback (DFB) lasers to grating duty cycles, for both PDMS-air and substrate-film lasers. Overall, laser thresholds of PDMS-air (PA) DFB lasers are found to be significantly higher than substrate-film (SF) lasers, which is attributed to an approximate three-fold reduction of optical-confinement in the grating region. Slope output efficiencies are found to be comparatively higher in PA lasers relative to SF lasers for both DFB and DBR configurations and is attributed to several competing factors. The PDMS can be removed from the surface of the active film repeatedly and conformal contact is limited mainly by the particle build up on the PDMS surface. The proposed PA system is expected to be useful in rapid laser metrology of new gain materials and in practical applications of optically pumped lasers.

11.
J Phys Chem Lett ; 13(39): 8978-8986, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36149007

RESUMEN

Interchromophoric interactions such as Coulombic coupling and exchange interactions are crucial to the functional properties of numerous π-conjugated systems. Here, we use magnetic circular dichroism (MCD) spectroscopy to investigate interchromophoric interactions in singlet fission relevant pentacene dimers. Using a simple analytical model, we outline a general relationship between the geometry of pentacene dimers and their calculated MCD response. We analyze experimental MCD spectra of different covalently bridged pentacene dimers to reveal how the molecular structure of the "bridge" affects the magnitude of through-space Coulombic and through-bond exchange interactions in the system. Our results show that through-bond interactions are significant in dimers with conjugated molecules as bridging units and these interactions promote the overall electronic coupling in the system. Our generalized approach paves the way for the application of MCD in investigating interchromophoric interactions across a range of π-conjugated systems.

12.
Nat Commun ; 13(1): 2827, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595764

RESUMEN

Organic photovoltaics (OPVs) promise cheap and flexible solar energy. Whereas light generates free charges in silicon photovoltaics, excitons are normally formed in organic semiconductors due to their low dielectric constants, and require molecular heterojunctions to split into charges. Recent record efficiency OPVs utilise the small molecule, Y6, and its analogues, which - unlike previous organic semiconductors - have low band-gaps and high dielectric constants. We show that, in Y6 films, these factors lead to intrinsic free charge generation without a heterojunction. Intensity-dependent spectroscopy reveals that 60-90% of excitons form free charges at AM1.5 light intensity. Bimolecular recombination, and hole traps constrain single component Y6 photovoltaics to low efficiencies, but recombination is reduced by small quantities of donor. Quantum-chemical calculations reveal strong coupling between exciton and CT states, and an intermolecular polarisation pattern that drives exciton dissociation. Our results challenge how current OPVs operate, and renew the possibility of efficient single-component OPVs.

13.
Nat Commun ; 13(1): 6885, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371402

RESUMEN

The importance of modified peptides and proteins for applications in drug discovery, and for illuminating biological processes at the molecular level, is fueling a demand for efficient methods that facilitate the precise modification of these biomolecules. Herein, we describe the development of a photocatalytic method for the rapid and efficient dimerization and site-specific functionalization of peptide and protein diselenides. This methodology, dubbed the photocatalytic diselenide contraction, involves irradiation at 450 nm in the presence of an iridium photocatalyst and a phosphine and results in rapid and clean conversion of diselenides to reductively stable selenoethers. A mechanism for this photocatalytic transformation is proposed, which is supported by photoluminescence spectroscopy and density functional theory calculations. The utility of the photocatalytic diselenide contraction transformation is highlighted through the dimerization of selenopeptides, and by the generation of two families of protein conjugates via the site-selective modification of calmodulin containing the 21st amino acid selenocysteine, and the C-terminal modification of a ubiquitin diselenide.


Asunto(s)
Péptidos , Selenocisteína , Selenocisteína/química , Péptidos/química , Proteínas , Aminoácidos
14.
ACS Appl Mater Interfaces ; 13(31): 37840-37848, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314169

RESUMEN

Halide perovskites hold promise for energy and optoelectronic applications due to their fascinating photophysical properties and facile processing. Among various forms, epitaxial thin single crystals (TSCs) are highly desirable due to their high crystallinity, reduced defects, and easy epitaxial integration with other materials. However, a cost-effective method for obtaining TSCs with perfect epitaxial features remains elusive. Here, we demonstrate a direct epitaxial growth of high-quality all-inorganic perovskite CsPbBr3 TSCs on various substrates through a facile solution process under near-ambient conditions. Structural characterizations reveal a high-quality epitaxy between the obtained perovskite TSCs and substrates, thus leading to efficiently reduced defects. The resultant TSCs display a low trap density (∼1011 cm-3) and a long carrier lifetime (∼10.16 ns). Top-gate/top-contact transistors based on these TSCs exhibit high on/off ratios of over 105, an optimal hole mobility of 3.9 cm2 V-1 s-1, almost hysteresis-free operation, and high stability at room temperature. Such a facile approach for the high-yield production of perovskite epitaxial TSCs will enable a broad range of high-performance electronic applications.

15.
Adv Sci (Weinh) ; 7(7): 1902950, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32274305

RESUMEN

Lead halide perovskites (LHPs) have become a promising alternative for a wide range of optoelectronic devices, thanks to their solution-processability and impressive optical and electrical properties. More recently, LHPs have been investigated in magneto-optic studies and have exhibited spin-polarized emission, photoinduced magnetization, and long spin lifetimes. Here, the viability of methylammonium lead bromide (MAPbBr3) single crystals as solution-processed Faraday rotators is demonstrated. Compared to terbium gallium garnet, the industry standard in the visible, it is found that MAPbBr3 exhibits Verdet constants (i.e., strength of Faraday effect) of similar or greater magnitude (up to 2.5x higher), with lower temperature dependence. Due to its low trap absorption, it is calculated that an optical isolator made from MAPbBr3, with appropriate antireflection coatings, should reach ≈95% transmission and achieve 40 dB isolation for incoming powers of over 2 W. It is also shown that the Verdet constant of MAPbBr3 can be calculated accurately from its dispersion in refractive index, allowing the possibility to predict similar effects in other perovskite materials.

16.
J Phys Chem A ; 113(41): 10891-4, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19764769

RESUMEN

At 77 K, thermally annealed films of chiral poly[9,9-bis((3S)-3,7-dimethyloctyl)-2,7-fluorene] show a photoinduced absorption (PIA) band near 1.5 eV due to a transition from the lowest triplet state to a higher triplet state. This photoinduced absorption is found to show circular dichroism (CD). Dividing this CD by the magnitude of the PIA, we find that the selectivity for absorption of left circular polarized light over right circularly polarized light is remarkably high and characterized by a dissymmetry ratio g = +0.2. The unusual magnitude of g is interpreted as arising from extrinsic CD, i.e., from the interaction of the local linear polarization of the triplet-triplet absorption with the linear birefringence of the surrounding polymer matrix.

17.
J Phys Chem Lett ; 10(24): 7547-7553, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31736314

RESUMEN

The optical and electronic properties of π-conjugated polymers in organic electronic devices depend on their intra- and interchain interactions, dictated by the internal arrangement of the polymer chains in an amorphous or semicrystalline aggregated state. Here, we discuss the utility of circular intensity differential scattering (CIDS) of circularly polarized light as a sensitive probe to identify the internal arrangement of the polymer chains in helical polymer aggregates. We advance existing theoretical models to utilize the CIDS response and extract structural properties such as the size, orientation, and periodicity of a polymer aggregate. As an example, we analyze the CIDS signatures of helically assembled fibrillar aggregates of a chiral polymer poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzothiadiazole)] (PFBT) in solution and reveal that PFBT fibrils incorporate at least five intertwined polymer chains. We anticipate our approach can be extended more generally to investigate the internal arrangement of supramolecular assemblies of a wide range of fibrillar aggregates of π-conjugated polymers.

18.
Adv Mater ; 31(17): e1807628, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30873689

RESUMEN

Hybrid organic-inorganic perovskites (HOIPs), in particular 3D HOIPs, have demonstrated remarkable properties, including ultralong charge-carrier diffusion lengths, high dielectric constants, low trap densities, tunable absorption and emission wavelengths, strong spin-orbit coupling, and large Rashba splitting. These superior properties have generated intensive research interest in HOIPs for high-performance optoelectronics and spintronics. Here, 3D hybrid organic-inorganic perovskites that implant chirality through introducing the chiral methylammonium cation are demonstrated. Based on structural optimization, phonon spectra, formation energy, and ab initio molecular dynamics simulations, it is found that the chirality of the chiral cations can be successfully transferred to the framework of 3D HOIPs, and the resulting 3D chiral HOIPs are both kinetically and thermodynamically stable. Combining chirality with the impressive optical, electrical, and spintronic properties of 3D perovskites, 3D chiral perovskites is of great interest in the fields of piezoelectricity, pyroelectricity, ferroelectricity, topological quantum engineering, circularly polarized optoelectronics, and spintronics.

19.
ACS Nano ; 13(9): 10140-10153, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31490653

RESUMEN

Heterostructured two-dimensional colloidal nanoplatelets are a class of material that has attracted great interest for optoelectronic applications due to their high photoluminescence yield, atomically tunable thickness, and ultralow lasing thresholds. Of particular interest are laterally heterostructured core-crown nanoplatelets with a type-II band alignment, where the in-plane spatial separation of carriers leads to indirect (or charge transfer) excitons with long lifetimes and bright, highly Stokes shifted emission. Despite this, little is known about the nature of the lowest energy exciton states responsible for emission in these materials. Here, using polarization-controlled, steady-state, and time-resolved photoluminescence measurements, at temperatures down to 1.6 K and magnetic fields up to 30 T, we study the exciton fine structure and spin dynamics of archetypal type-II CdSe/CdTe core-crown nanoplatelets. Complemented by theoretical modeling and zero-field quantum beat measurements, we find the bright-exciton fine structure consists of two linearly polarized states with a fine structure splitting ∼50 µeV and an indirect exciton Landé g-factor of 0.7. In addition, we show the exciton spin lifetime to be in the microsecond range with an unusual B-3 magnetic field dependence. The discovery of linearly polarized exciton states and emission highlights the potential for use of such materials in display and imaging applications without polarization filters. Furthermore, the small exciton fine structure splitting and a long spin lifetime are fundamental advantages when envisaging CdSe/CdTe nanoplatelets as elementary bricks for the next generation of quantum devices, particularly given their ease of fabrication.

20.
J Phys Chem B ; 111(19): 5124-31, 2007 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-17441753

RESUMEN

Circular differential transmission in thick films (1.1 mum) of poly{9,9-bis[(3S)-3,7-dimethyloctyl]-2,7-fluorene} is investigated. The vitrified liquid crystalline film obtained after annealing shows high circular differential transmission of light in the wavelength range where the polyfluorene does not absorb (lambda > 450 nm). Using a specifically designed chiroptical setup, we show that circular selective reflection of light in which the circular polarization of the light is retained after reflection, a process which is characteristic for cholesteric liquid crystalline films, makes a negligible contribution to the differential transmission. Using an integrating sphere, we show that circular differential scattering can account for the observed circular differential transmission for lambda > 450 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA