Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Phys Chem Chem Phys ; 25(24): 16389-16403, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37293887

RESUMEN

Extractant aggregation in liquid-liquid extraction organic phases impacts extraction energetics and is related to the deleterious efficiency-limiting liquid-liquid phase transition known as third phase formation. Using small angle X-ray scattering, we find that structural heterogeneities across a wide range of compositions in binary mixtures of malonamide extractants and alkane diluents are well described by Ornstein-Zernike scattering. This suggests that structure in these simplified organic phases originates from the critical point associated with the liquid-liquid phase transition. To confirm this, we measure the temperature dependence of the organic phase structure, finding critical exponents consistent with the 3D Ising model. Molecular dynamics simulations were also consistent with this mechanism for extractant aggregation. Due to the absence of water or any other polar solutes required to form reverse-micellar-like nanostructures, these fluctuations are inherent to the binary extractant/diluent mixture. We also show how the molecular structure of the extractant and diluent modulate these critical concentration fluctuations by shifting the critical temperature: critical fluctuations are suppressed by increasing extractant alkyl tail lengths or decreasing diluent alkyl chain lengths. This is consistent with how extractant and diluent molecular structure are known to impact metal and acid loading capacity in many-component LLE organic phases, suggesting phase behavior of practical systems may be effectively studied in simplified organic phases. Overall, the explicit connection between molecular structure, aggregation and phase behavior demonstrated here will enable the design of more efficient separations processes.

2.
Phys Chem Chem Phys ; 22(34): 19089-19099, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32807995

RESUMEN

The electron density profile of bilayers of DPPC/cholesterol mixtures supported on semiconductor grade silicon substrates were studied with the objective of determining how the proximity of a solid interface modifies the phase diagram of mixed bilayers. The bilayers were studied in situ immersed in water via synchrotron X-ray reflectivity (XRR). Measurements were performed as a function of temperature through the main phase transition and cholesterol mole fractions up to 40%. Analysis of XRR yields the bilayer thickness, roughness and leaflet asymmetry. We find that the structure of the pure DPPC bilayers in the gel phase is in agreement with previous X-ray measurements of supported bilayers deposited via vesicle fusion and multilamellar vesicles but show more clearly defined features than measurements made on films formed using Langmuir-Blodget Langmuir-Shaffer (LB) deposition. Examination of bilayer thickness vs. temperature shows that the melting temperature for supported bilayers is shifted upwards by approximately 4 °C relative to multilamellar vesicles and that the melting temperature decreases with increasing cholesterol content up to 20%. For pure DPPC bilayers the leaflets melt in two stages with the distal leaflet melting first. For cholesterol concentrations of 10% and 20% there is no clear indication of separate melting. For 33% and 40% cholesterol content no clear transition is seen in the bilayer thickness, but an abrupt change in roughness indicates possible microdomain formation in the 40% cholesterol sample.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Membrana Dobles de Lípidos/química , Estructura Molecular , Sincrotrones , Temperatura de Transición , Agua/química , Rayos X
3.
Eur Phys J E Soft Matter ; 41(10): 123, 2018 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30324531

RESUMEN

The results on Winsor phases, droplet and bicontinous microemulsions phases with polymer-grafted lipids studied by Small Angle Neutron Scattering (SANS) are reported below, together with the contrast variation techniques used to characterize the average curvature in the system. We have clearly shown that polymer-grafted lipids change the interaction between microemulsion droplets --it need not be just repulsive but could also be attractive. They induce structural changes or bring about complete phase changes as observed visually in the Winsor phases when added in sufficient amounts. In the bicontinous microemulsion phases, the polymer-grafted lipids decrease the persistence length, hence the bending rigidity, increase the apparent average thickness of the film, and cause a complex deformation of the film which brings about a negative curvature change at a semi-local scale. Contrary to the naive prediction that the polymer-grafted lipids should increase membrane rigidity our experiments show a decrease. This is a subtle effect caused by perhaps an indirect coupling between film curvature and concentration fluctuations.

4.
J Colloid Interface Sci ; 590: 375-386, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33556757

RESUMEN

HYPOTHESIS: The surfactant C8EO8CH2COOH (Akypo LF2) and its salts have a small hydrophobic and a significantly longer hydrophilic part. As a consequence, there must be a significant steric constraint, once these surfactant molecules form micelles. In addition, the partially charged headgroups should bring some additional fine-tuning via electrostatic interactions to this "essentially non-ionic" surfactant. EXPERIMENTS: Phase diagrams of binary mixtures of water and C8EO8CH2COOH are established over large concentration and temperature ranges, also at different pHs and in the presence of sodium and calcium ions. Surface tensions and osmotic pressures are measured to understand the systems. To evaluate the microstructures, also Dynamic Light Scattering and Small-Angle X-ray Scattering are performed. FINDINGS: Apart from the formation of coacervates at very low surfactant concentrations, spherical micelles persist over the whole concentration and temperature range and do not change in size and shape. At very high surfactant concentrations, above 60% by weight, where the headgroups are no longer fully hydrated, the standard core-shell structure of micelles vanishes and highly stabilized aggregates of 8-26 octyl chains are suspended in interdigitated polyoxyethylene layers and form an "osmotic brush". When the acid is partially transformed to a sodium salt, the repulsion between the micelles increases, whereas bridging between micelles prevails, when the counterions are calcium cations. Remarkably, the negative charges of the headgroups are randomly distributed in the hydrophilic ethylene oxide shell. Altogether, a phase diagram without lyotropic liquid crystalline phases and an extreme shift of the cloud-point in temperature and composition is found, similar to the phase diagram of C8EO8OH already known in literature. The phase properties can be explained by the curvature and packing constraints together with the Lindemann rule applied to short hydrocarbon chains.

5.
J Am Chem Soc ; 131(21): 7430-43, 2009 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-19422237

RESUMEN

Self-assembly of large quantities of entirely water-soluble molecules is entropically challenging. In this work, we describe the design and synthesis of water-soluble aromatic (dichromonyl) molecules that can form nonamphiphilic assemblies and the so-called chromonic liquid crystal phase in water. We discover a new molecule, 5'DSCG-diviol, that exhibits a large birefringent phase, and we show that the formation of this unique class of nonamphiphilic lyotropic liquid crystal shares enormous similarity to the polymorphism observed for crystal formation. Small-angle neutron scattering (SANS) revealed a concentration-independent rod-shaped assembly at concentrations below and above the formation of liquid crystal phase. Adding a small percentage of monoanionic aromatic molecules to the liquid crystal resulted in the elimination of the liquid crystal phase, but addition of dianionic aromatic molecules retained the liquid crystal phase. Together, these results suggest a new assembly structure for nonamphiphilic molecules in water, which is comprised of long threads of small molecules connected by salt bridges stacked over aromatic groups, with the molecular threads heavily hydrated with solvent water. Furthermore, mixing molecules with different structures can result in new liquid crystalline materials, or in segregation of the molecules into different solvation volumes, each of which contains only one type of molecule. The unusual thermodynamic incompatibility of entirely water-soluble molecules also supports the model of molecular threads, in which two polymer-like assemblies do not mix.


Asunto(s)
Cristales Líquidos/química , Termodinámica , Cromonas , Entropía , Hidrocarburos Aromáticos , Solubilidad , Agua
6.
J Phys Chem B ; 112(12): 3797-806, 2008 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-18311964

RESUMEN

The conformation of bovine serum albumin (BSA), as well as its interactions with negatively charged mica surfaces in saline solutions of different pH values, have been studied by small-angle neutron scattering (SANS) and chemical force microscopy (CFM), respectively. A new approach to extract the contribution of elementary interactions from the statistically averaged force-extension curves through self-consistent fitting was proposed and used to understand the effects of pH on the interactions and conformation of BSA in saline solutions. When pH increases, the SANS results reveal that the sizes of BSA molecules increase slightly, while the statistical analysis of the CFM results shows that the averaged pull-off force for the elongation monotonously decreases. The decrease of pull-off force with the increase of pH results from the decrease in the strength of hydrogen bonding and the number of interaction pairs, as well as the slight increase of the strength of van der Waals interaction. When pH approaches the isoelectric point (pI) of BSA, results from both SANS and CFM suggest a loss of long-range interactions in BSA molecules. Our results also suggest that the force-extension curve is mainly contributed by the van der Waals interaction. The combination of SANS and CFM provides new insight to understand the interactions and conformation of BSA molecules.


Asunto(s)
Neutrones , Albúmina Sérica Bovina/química , Animales , Bovinos , Concentración de Iones de Hidrógeno , Microscopía , Conformación Molecular , Dispersión de Radiación
7.
J Theor Biol ; 251(1): 60-7, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18083197

RESUMEN

When partially polymerized membranes wrinkle they exhibit a passage from a conventional buckling (due to an instability caused by chiral symmetry breaking) at low polymerization to a local roughening (due to a frustration in the local packing of the chiral molecules composing the membrane) as a function of the polymerization of the lipids aliphatic tails. This transition was found to be non-universal and here we used neutron scattering to elucidate that this behavior is due to the onset of stretching in the membrane accompanied by a bilayer thickness variation. Close to the percolation limit this deformation is plastic similar to mutated lysozymes. We draw an analogy between this transition and echinocytes in red blood cells.


Asunto(s)
Membrana Eritrocítica/fisiología , Fractales , Fluidez de la Membrana , Animales , Modelos Biológicos , Transición de Fase
8.
J Colloid Interface Sci ; 524: 279-288, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29655147

RESUMEN

HYPOTHESIS: Polyoxyethylene (20) sorbitan monooleate (Tween 80) can be incorporated into the gel-like phase formed by L-α-phosphatidylcholine (PC) and dioctyl sulfosuccinate sodium salt (DOSS) for potential application as a gel-like dispersant for oil spill treatment. Such gel-like dispersants offer advantages over existing liquid dispersants for mitigating oil spill impacts. EXPERIMENTS: Crude oil-in-saline water emulsions stabilized by the surfactant system were characterized by optical microscopy and turbidity measurements while interfacial tensions were measured by the spinning drop and pendant drop techniques. The microstructure of the gel-like surfactant mesophase was elucidated using small angle neutron scattering (SANS), cryo scanning electron microscopy (cryo-SEM), and 31P nuclear magnetic resonance (NMR) spectroscopy. FINDINGS: The gel-like phase consisting of PC, DOSS and Tween 80 is positively buoyant on water and breaks down on contact with floating crude oil layers to release the surfactant components. The surfactant mixture effectively lowers the crude oil-saline water interfacial tension to the 10-2 mN/m range, producing stable crude oil-in-saline water emulsions with an average droplet size of about 7.81 µm. Analysis of SANS, cryo-SEM and NMR spectroscopy data reveals that the gel-like mesophase has a lamellar microstructure that transition from rolled lamellar sheets to onion-like, multilamellar structures with increasing Tween 80 content.

9.
J Phys Chem B ; 111(33): 9900-7, 2007 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-17661502

RESUMEN

Small angle neutron (SANS) and light scattering was used to study the interaction between fragments of double stranded deoxyribonucleic acid (DNA) and a synthetic triblock [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] amphiphilic polymer, known as L64, a potential vector for gene therapy. The mechanism of action of this vector is yet unknown. The contrast variation method was used to separate the partial structure factors of the different components in mixtures of triblock and DNA. It has been found that the copolymer and DNA molecules exhibit repulsive interactions. Further, the interaction between the copolymer and a model lipid membrane was investigated in order to explain the action of the vector. Electrical measurements on black lipid membranes indicated that the main effect of L64 as a vector is to permeabilize the cell's membrane.


Asunto(s)
ADN/química , Lípidos/química , Membranas Artificiales , Polietilenglicoles/química , Glicoles de Propileno/química , Animales , ADN/administración & dosificación , Portadores de Fármacos , Electroquímica , Peces , Terapia Genética , Luz , Masculino , Neutrones , Poloxámero/química , Dispersión de Radiación , Testículo/química
10.
J Phys Chem B ; 111(3): 515-20, 2007 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-17228908

RESUMEN

Small-angle neutron scattering (SANS) has been used to investigate the microstructure of beta-lactoglobulin/pectin coacervates prepared by different initial protein/polysaccharide weight ratio (r), sodium chloride concentration (C(NaCl)), and pectin charge density. The higher r and higher pectin charge density lead to higher scattering intensity at small q range (0.007 Angstrom(-1) < q < 0.02 Angstrom(-1)), suggesting that the charges of pectin chains are screened significantly by the binding of oppositely charged protein molecules, leading to a tighter aggregation of pectin chains. On the other hand, the appearance of a shoulder peak at intermediate q range (0.04 Angstrom(-1) < q < 0.2 Angstrom(-1)) is used to interpret the formation of protein domains in beta-lactoglobulin/pectin coacervates. At C(NaCl) = 0.1 M, the coacervate of beta-lactoglobulin and pectin A does not show a shoulder peak at intermediate q range at r = 10:1, suggesting that protein molecules are separately bound on pectin chains. However, a shoulder peak appears at intermediate q range at r = 20:1 and 30:1, and the average protein domain size estimated from the shoulder peak position is 7.2 and 8.5 nm, respectively, for these two coacervates. When C(NaCl) increases from 0.05 to 0.2 M, the shoulder peak shifts toward smaller q and becomes broader, indicating that the addition of a higher amount of salt leads to a more heterogeneous coacervate structure. Pectin B with a lower linear charge density favors the formation of larger protein domains. The formation of protein domains in beta-lactoglobulin/pectin coacervates is partially ascribed to the self-aggregation of beta-lactoglobulin molecules. Two kinds of microstructures of beta-lactoglobulin/pectin coacervates with and without observable protein domains have been proposed.


Asunto(s)
Lactoglobulinas/química , Pectinas/química , Algoritmos , Concentración de Iones de Hidrógeno , Focalización Isoeléctrica , Lactoglobulinas/ultraestructura , Modelos Moleculares , Neutrones , Pectinas/ultraestructura , Dispersión de Radiación , Cloruro de Sodio/química
11.
Protein Sci ; 26(3): 505-514, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27977887

RESUMEN

Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure-function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy-Hb and HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo measurements accompanied by wide-angle X-ray scattering to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large-scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. These observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors.


Asunto(s)
Carboxihemoglobina/química , Ácido Fítico/química , Regulación Alostérica , Carboxihemoglobina/metabolismo , Humanos , Ácido Fítico/metabolismo , Unión Proteica , Difracción de Rayos X
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(1 Pt 1): 010602, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16907050

RESUMEN

X-ray photon correlation spectroscopy was employed in a surface standing wave geometry in order to resolve the thermally driven in-plane dynamics at both the surface/vacuum (top) and polymer/polymer (bottom) interfaces of a thin polystyrene (PS) film on top of Poly(4-bromo styrene) (PBrS) and supported on a Si substrate. The top vacuum interface shows two relaxation modes: one fast and one slow, while the buried polymer-polymer interface shows a single slow mode. The slow mode of the top interface is similar in magnitude and wave vector dependence to the single mode of the buried interface. The dynamics are consistent with a low-viscosity mixed layer between the PS and PBrS and coupling of the capillary wave fluctuations between this layer and the PS.

13.
J Phys Chem B ; 109(30): 14356-64, 2005 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16852806

RESUMEN

Alamethicin is a well-studied channel-forming peptide that has a prototypical amphipathic helix structure. It permeabilizes both microbial and mammalian cell membranes, causing loss of membrane polarization and leakage of endogenous contents. Antimicrobial peptide-lipid systems have been studied quite extensively and have led to significant advancements in membrane biophysics. These studies have been performed on lipid bilayers that are generally charged or zwitterionic and restricted to a thickness range of 3-5 nm. Bilayers of amphiphilic diblock copolymers are a relatively new class of membranes that can have significantly different physicochemical properties compared with those of lipid membranes. In particular, they can be made uncharged, nonzwitterionic, and much thicker than their lipid counterparts. In an effort to extend studies of membrane-protein interactions to these synthetic membranes, we have characterized the interactions of alamethicin and several other membrane-active peptides with diblock copolymer bilayers. We find that although alamethicin is too small to span the bilayer, the peptide interacts with, and ruptures, thick polymer membranes.


Asunto(s)
Alameticina/química , Agua/química , Dicroismo Circular , Fluoresceínas/química , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Fluorescencia
14.
Sci Rep ; 3: 2843, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24091898

RESUMEN

Mineral inclusions in biomass are attracting increased scrutiny due to their potential impact on processing methods designed to provide renewable feedstocks for the production of chemicals and fuels. These inclusions are often sculpted by the plant into shapes required to support functional roles that include the storage of specific elements, strengthening of the plant structure, and providing a defense against pathogens and herbivores. In situ characterization of these inclusions faces substantial challenges since they are embedded in an opaque, complex polymeric matrix. Here we describe the use of Bragg coherent diffraction imaging (BCDI) to study mineral inclusions within intact maize stalks. Three-dimensional BCDI data sets were collected and used to reconstruct images of mineral inclusions at 50-100 nm resolution. Asymmetries in the intensity distributions around the Bragg peaks provided detailed information about the deformation fields within these crystal particles revealing lattice defects that result in distinct internal crystal domains.


Asunto(s)
Imagenología Tridimensional/métodos , Cuerpos de Inclusión/química , Imagen Molecular/métodos , Sesquiterpenos/química , Zea mays/química , Zea mays/metabolismo , Microscopía Fluorescente/métodos , Difracción de Rayos X/métodos
15.
Artículo en Inglés | MEDLINE | ID: mdl-22254364

RESUMEN

Cellulose is the most abundant renewable source of organic molecules on earth[1]. As fossil fuel reserves become depleted, the use of cellulose as a feed stock for fuels and chemicals is being aggressively explored. Cellulose is a linear polymer of glucose that packs tightly into crystalline fibrils that make up a substantial proportion of plant cell walls. Extraction of the cellulose chains from these fibrils in a chemically benign process has proven to be a substantial challenge [2]. Monitoring the deconstruction of the fibrils in response to physical and chemical treatments would expedite the development of efficient processing methods. As a step towards achieving that goal, we here describe Bragg-coherent diffraction imaging (CDI) as an approach to producing images of cellulose fibrils in situ within vascular bundles from maize.


Asunto(s)
Celulosa/química , Celulosa/ultraestructura , Refractometría/métodos , Difracción de Rayos X/métodos , Zea mays/química , Zea mays/ultraestructura , Conformación Molecular
16.
J Mol Biol ; 397(2): 423-35, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20096701

RESUMEN

Neutron spin-echo spectroscopy was used to study structural fluctuations that occur in hemoglobin (Hb) and myoglobin (Mb) in solution. Using neutron spin-echo data up to a very high momentum transfer q ( approximately 0.62 A(-)(1)), we characterized the internal dynamics of these proteins at the levels of dynamic pair correlation function and self-correlation function in the time range of several picoseconds to a few nanoseconds. In the same protein solution, data transition from pair correlation motion to self-correlation motion as the momentum transfer q increases. At low q, coherent scattering dominates; at high q, observations are largely due to incoherent scattering. The low q data were interpreted in terms of an effective diffusion coefficient; on the other hand, the high q data were interpreted in terms of mean square displacements. Comparison of data from the two homologous proteins collected at different temperatures and protein concentrations was used to assess the contributions made by translational and rotational diffusion and internal modes of motion to the data. The temperature dependence of decay times can be attributed to changes in the viscosity and temperature of the solvent, as predicted by the Stokes-Einstein relationship. This is true for contributions from both diffusive and internal modes of motion, indicating an intimate relationship between the internal dynamics of the proteins and the viscosity of the solvent. Viscosity change associated with protein concentration can account for changes in diffusion observed at different concentrations, but is apparently not the only factor involved in the changes in internal dynamics observed with change in protein concentration. Data collected at high q indicate that internal modes in Mb are generally faster than those in Hb, perhaps due to the greater surface-to-volume ratio of Mb and the fact that surface groups tend to exhibit faster motion than buried groups. Comparison of data from Hb and data from Mb at low q indicates an unexpectedly rapid motion of Hb alphabeta dimers relative to one another. Dynamic motion of subunits is increasingly perceived as important to the allosteric behavior of Hb. Our data demonstrate that this motion is highly sensitive to protein concentration, temperature, and solvent viscosity, indicating that great care needs to be exercised in interpreting its effect on protein function.


Asunto(s)
Hemoglobinas/química , Mioglobina/química , Animales , Bovinos , Modelos Moleculares , Conformación Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Análisis Espectral , Temperatura , Factores de Tiempo
17.
Eur Phys J E Soft Matter ; 17(3): 353-9, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16025193

RESUMEN

We have used measurements of the absolute intensity of diffuse X-ray scattering to extract the interfacial tension of a buried polymer/polymer interface. Diffuse scattering was excited by an X-ray standing wave whose phase was adjusted to have a high intensity at the polymer/polymer interface and simultaneously a node at the polymer/air interface. This method permits the capillary-wave-induced roughness of the interface, and hence the interfacial tension, to be measured independently of the polymer/polymer interdiffusion.


Asunto(s)
Algoritmos , Modelos Químicos , Modelos Moleculares , Poliestirenos/química , Refractometría/métodos , Difracción de Rayos X/métodos , Simulación por Computador , Poliestirenos/análisis , Dispersión de Radiación , Propiedades de Superficie
18.
Nat Mater ; 3(3): 177-82, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14991020

RESUMEN

Liquid crystals are often combined with polymers to influence the liquid crystals' orientation and mechanical properties, but at the expense of reorientation speed or uniformity of alignment. We introduce a new method to create self-assembled nematic liquid-crystal gels using an ABA triblock copolymer with a side-group liquid-crystalline midblock and liquid-crystal-phobic endblocks. In contrast to in situ polymerized networks, these physical gels are homogeneous systems with a solubilized polymer network giving them exceptional optical uniformity and well-defined crosslink density. Furthermore, the unusually high-molecular-weight polymers used allow gels to form at lower concentrations than previously accessible. This enables these gels to be aligned by surface anchoring, shear, or magnetic fields. The high content of small-molecule liquid crystal (>/=95%) allows access to a regime of fast reorientation dynamics.


Asunto(s)
Geles/síntesis química , Polímeros/síntesis química , Compuestos de Bifenilo/química , Nitrilos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA