Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 29(3): 3490-3502, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33770946

RESUMEN

We present a monolithic InP-based photonic integrated circuit (PIC) consisting of a widely tunable laser master oscillator feeding an array of integrated semiconductor optical amplifiers that are interferometrically combined on-chip in a single-mode waveguide. We demonstrate a stable and efficient on-chip coherent beam combination and obtain up to 240 mW average power from the monolithic PIC, with 30-50 kHz Schawlow-Townes linewidths and >180 mW average power across the extended C-band. We also explored hybrid integration of the InP-based laser and amplifier array PIC with a high quality factor silicon nitride microring resonator. We observe lasing based on gain from the interferometrically combined amplifier array in an external cavity formed via feedback from the silicon nitride microresonator chip; this configuration results in narrowing of the Schawlow-Townes linewidth to ∼3 kHz with 37.9 mW average power at the SiN output facet. This work demonstrates a new approach toward high power, narrow linewidth sources that can be integrated with on-chip single-mode waveguide platforms for potential applications in nonlinear integrated photonics.

2.
Opt Express ; 27(12): 16483-16492, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252873

RESUMEN

We present monolithically integrated multi-channel coherent L-band transmitter (Tx) and receiver (Rx) photonic integrated circuits (PICs) on InP substrates. The L-band PICs are able to provide post-forward error correction (FEC), error-free operation for dual-polarization (DP) 16-QAM coherent transmission at 33 Gbaud. These transceivers operate at 200 Gbps per channel and support 1.2 Tbps aggregate capacity per 6 channel PIC. We also demonstrate in this work a C + L band communication system with two C-band superchannels (2 x 6λ) and three L-band superchannels (3 x 6λ) over a 600 km link. The received signals all have Q > 7.7 dB, which is well above the error-free threshold of the FEC used in this work.

3.
Opt Express ; 24(21): 23925-23940, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27828227

RESUMEN

We present a 32 channel indium phosphide integrated pulse shaper with 25 GHz channel spacing, where each channel is equipped with a semiconductor optical amplifier allowing for programmable line-by-line gain control with submicrosecond reconfigurability. We critically test the integrated pulse shaper by using it in comb-based RF-photonic filtering experiments where the precise gain control is leveraged to synthesize high-fidelity RF filters which we reconfigure on a microsecond time scale. Our on-chip pulse shaping demonstration is unmatched in its combination of speed, fidelity, and flexibility, and will likely open new avenues in the field of advanced broadband signal generation and processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA