Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39122815

RESUMEN

A central goal of neuroscience is to understand how the brain transforms external stimuli and internal bodily signals into patterns of activity that underlie cognition, emotional states, and behavior. Understanding how these patterns of activity may be disrupted in mental illness is crucial for developing novel therapeutics. It is well appreciated that psychiatric disorders are complex, circuit-based disorders that arise from dysfunctional activity patterns generated in discrete cell types and their connections. Recent advances in large-scale, cell-type specific calcium imaging approaches have shed new light on the cellular, circuit, and network-level dysfunction in animal models for psychiatric disorders. Here, we highlight a series of recent findings over the last ~10 years from in vivo calcium imaging studies that show how aberrant patterns of activity in discrete cell types and circuits may underlie behavioral deficits in animal models for several psychiatric disorders, including depression, anxiety, autism spectrum disorders, and schizophrenia. by elucidating cell types and their activity patterns. These advances in calcium imaging in pre-clinical models demonstrate the power of cell-type-specific imaging tools in understanding the underlying dysfunction in cell types, activity patterns, and neural circuits that may contribute to disease and provide new blueprints for developing more targeted therapeutics and treatment strategies.

2.
Ann Clin Transl Neurol ; 10(10): 1790-1801, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37545094

RESUMEN

OBJECTIVE: Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder caused by autosomal-dominant pathogenic variants in either the TSC1 or TSC2 gene, and it is characterized by hamartomas in multiple organs, such as skin, kidney, lung, and brain. These changes can result in epilepsy, learning disabilities, and behavioral complications, among others. The mechanistic link between TSC and the mechanistic target of the rapamycin (mTOR) pathway is well established, thus mTOR inhibitors can potentially be used to treat the clinical manifestations of the disorder, including epilepsy. METHODS: In this study, we tested the efficacy of a novel mTOR catalytic inhibitor (here named Tool Compound 1 or TC1) previously reported to be more brain-penetrant compared with other mTOR inhibitors. Using a well-characterized hypomorphic Tsc2 mouse model, which displays a translationally relevant seizure phenotype, we tested the efficacy of TC1. RESULTS: Our results show that chronic treatment with this novel mTOR catalytic inhibitor (TC1), which affects both the mTORC1 and mTORC2 signaling complexes, reduces seizure burden, and extends the survival of Tsc2 hypomorphic mice, restoring species typical weight gain over development. INTERPRETATION: Novel mTOR catalytic inhibitor TC1 exhibits a promising therapeutic option in the treatment of TSC.


Asunto(s)
Epilepsia , Esclerosis Tuberosa , Ratones , Animales , Esclerosis Tuberosa/tratamiento farmacológico , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología , Proteínas Supresoras de Tumor/genética , Inhibidores mTOR , Serina-Treonina Quinasas TOR/genética , Modelos Animales de Enfermedad , Epilepsia/genética , Convulsiones/tratamiento farmacológico
3.
Ann Clin Transl Neurol ; 8(7): 1388-1397, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34102033

RESUMEN

OBJECTIVE: To confirm the critical factors affecting seizure susceptibility in acute pentylenetetrazole (PTZ) mouse epilepsy models and evaluate the prior literature for these factors. METHODS: Serial cohorts of wild-type mice administered intraperitoneal (IP)-PTZ were aggregated and analyzed by multivariate logistic regression for the effect of sex, age, background strain, dose, and physiologic stress (i.e., EEG implantation and/or single-housing) on seizure response. We assessed the reporting of these factors in a comprehensive literature review over the last 10 years (2010-2020). RESULTS: We conducted aggregated analysis of pooled data of 307 mice (220 C57BL/6J mice and 87 mixed background mice; 202 males, 105 females) with median age of 10 weeks (range: 6-49 weeks) with acute PTZ injection (dose range 40-65 mg/kg). Significance in multivariate analysis was found between seizures and increased PTZ dose (odds ratio (OR) 1.149, 95% confidence interval (CI) 1.102-1.205), older age (OR 1.1, 95% CI 1.041-1.170), physiologic stress (OR 17.36, 95% CI 7.349-44.48), and mixed background strain (OR 0.4725, 95% CI 0.2315-0.9345). Literature review identified 97 papers using acute PTZ-seizure models. Age, housing, sex, and background were omitted by 61% (59/97), 51% (49/97), 18% (17/97), and 8% (8/97) papers, respectively. Only 17% of publications specified all four factors (16/97). INTERPRETATION: Our analysis and literature review demonstrate a critical gap in standardization of acute PTZ-induced seizure paradigm in mice. We recommend that future studies specify and control for age, background strain, sex, and housing conditions of experimental animals.


Asunto(s)
Convulsivantes/toxicidad , Pentilenotetrazol/toxicidad , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Aislamiento Social , Factores de Edad , Animales , Electroencefalografía/métodos , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Convulsiones/genética , Factores Sexuales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA