Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 29(4): 646-656, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30846530

RESUMEN

We report on the development of a methylation analysis workflow for optical detection of fluorescent methylation profiles along chromosomal DNA molecules. In combination with Bionano Genomics genome mapping technology, these profiles provide a hybrid genetic/epigenetic genome-wide map composed of DNA molecules spanning hundreds of kilobase pairs. The method provides kilobase pair-scale genomic methylation patterns comparable to whole-genome bisulfite sequencing (WGBS) along genes and regulatory elements. These long single-molecule reads allow for methylation variation calling and analysis of large structural aberrations such as pathogenic macrosatellite arrays not accessible to single-cell second-generation sequencing. The method is applied here to study facioscapulohumeral muscular dystrophy (FSHD), simultaneously recording the haplotype, copy number, and methylation status of the disease-associated, highly repetitive locus on Chromosome 4q.


Asunto(s)
Metilación de ADN , Análisis de Secuencia de ADN/métodos , Variación Genética , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Análisis de Secuencia de ADN/normas
2.
Nat Methods ; 13(7): 587-90, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27159086

RESUMEN

Despite tremendous progress in genome sequencing, the basic goal of producing a phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. In this study, we describe an approach to performing de novo genome assembly and experimental phasing by integrating the data from Illumina short-read sequencing, 10X Genomics linked-read sequencing, and BioNano Genomics genome mapping to yield a high-quality, phased, de novo assembled human genome.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Humano , Genómica/métodos , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
3.
BMC Genomics ; 16: 734, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26416786

RESUMEN

BACKGROUND: Genome assembly remains an unsolved problem. Assembly projects face a range of hurdles that confound assembly. Thus a variety of tools and approaches are needed to improve draft genomes. RESULTS: We used a custom assembly workflow to optimize consensus genome map assembly, resulting in an assembly equal to the estimated length of the Tribolium castaneum genome and with an N50 of more than 1 Mb. We used this map for super scaffolding the T. castaneum sequence assembly, more than tripling its N50 with the program Stitch. CONCLUSIONS: In this article we present software that leverages consensus genome maps assembled from extremely long single molecule maps to increase the contiguity of sequence assemblies. We report the results of applying these tools to validate and improve a 7x Sanger draft of the T. castaneum genome.


Asunto(s)
Genoma , Programas Informáticos , Tribolium/genética , Animales , Genómica/métodos , Análisis de Secuencia de ADN
4.
BMC Genomics ; 16: 286, 2015 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-25886820

RESUMEN

BACKGROUND: Characterizing large genomic variants is essential to expanding the research and clinical applications of genome sequencing. While multiple data types and methods are available to detect these structural variants (SVs), they remain less characterized than smaller variants because of SV diversity, complexity, and size. These challenges are exacerbated by the experimental and computational demands of SV analysis. Here, we characterize the SV content of a personal genome with Parliament, a publicly available consensus SV-calling infrastructure that merges multiple data types and SV detection methods. RESULTS: We demonstrate Parliament's efficacy via integrated analyses of data from whole-genome array comparative genomic hybridization, short-read next-generation sequencing, long-read (Pacific BioSciences RSII), long-insert (Illumina Nextera), and whole-genome architecture (BioNano Irys) data from the personal genome of a single subject (HS1011). From this genome, Parliament identified 31,007 genomic loci between 100 bp and 1 Mbp that are inconsistent with the hg19 reference assembly. Of these loci, 9,777 are supported as putative SVs by hybrid local assembly, long-read PacBio data, or multi-source heuristics. These SVs span 59 Mbp of the reference genome (1.8%) and include 3,801 events identified only with long-read data. The HS1011 data and complete Parliament infrastructure, including a BAM-to-SV workflow, are available on the cloud-based service DNAnexus. CONCLUSIONS: HS1011 SV analysis reveals the limits and advantages of multiple sequencing technologies, specifically the impact of long-read SV discovery. With the full Parliament infrastructure, the HS1011 data constitute a public resource for novel SV discovery, software calibration, and personal genome structural variation analysis.


Asunto(s)
Genoma Humano , Variación Estructural del Genoma , Análisis de Secuencia de ADN/métodos , Biología Computacional , Bases de Datos Genéticas , Diploidia , Humanos , Programas Informáticos
5.
Nat Rev Genet ; 10(11): 756-68, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19809470

RESUMEN

Mutations in genes on the nucleotide excision repair pathway are associated with diseases, such as xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, that involve skin cancer and developmental and neurological symptoms. These mutations cause the defective repair of damaged DNA and increased transcription arrest but, except for skin cancer, the links between repair and disease have not been obvious. Widely different clinical syndromes seem to result from mutations in the same gene, even when the mutations result in complete loss of function. The mapping of mutations in recently solved protein structures has begun to clarify the links between the molecular defects and phenotypes, but the identification of additional sources of clinical variability is still necessary.


Asunto(s)
Síndrome de Cockayne/genética , Reparación del ADN/genética , Variación Genética/genética , Síndromes de Tricotiodistrofia/genética , Xerodermia Pigmentosa/genética , Animales , Humanos
6.
PLoS Genet ; 8(9): e1002898, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028339

RESUMEN

Domestic dogs can suffer from hearing losses that can have profound impacts on working ability and quality of life. We have identified a type of adult-onset hearing loss in Border Collies that appears to have a genetic cause, with an earlier age of onset (3-5 years) than typically expected for aging dogs (8-10 years). Studying this complex trait within pure breeds of dog may greatly increase our ability to identify genomic regions associated with risk of hearing impairment in dogs and in humans. We performed a genome-wide association study (GWAS) to detect loci underlying adult-onset deafness in a sample of 20 affected and 28 control Border Collies. We identified a region on canine chromosome 6 that demonstrates extended support for association surrounding SNP Chr6.25819273 (p-value = 1.09 × 10(-13)). To further localize disease-associated variants, targeted next-generation sequencing (NGS) of one affected and two unaffected dogs was performed. Through additional validation based on targeted genotyping of additional cases (n = 23 total) and controls (n = 101 total) and an independent replication cohort of 16 cases and 265 controls, we identified variants in USP31 that were strongly associated with adult-onset deafness in Border Collies, suggesting the involvement of the NF-κB pathway. We found additional support for involvement of RBBP6, which is critical for cochlear development. These findings highlight the utility of GWAS-guided fine-mapping of genetic loci using targeted NGS to study hereditary disorders of the domestic dog that may be analogous to human disorders.


Asunto(s)
Proteínas Portadoras/genética , Enfermedades Cocleares/genética , Proteínas de Unión al ADN/genética , Sordera , Endopeptidasas/genética , Envejecimiento/genética , Animales , Mapeo Cromosómico , Cóclea/crecimiento & desarrollo , Cóclea/patología , Sordera/genética , Sordera/veterinaria , Perros , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , FN-kappa B/genética , Polimorfismo de Nucleótido Simple , Ubiquitina-Proteína Ligasas , Proteasas Ubiquitina-Específicas
7.
Biochim Biophys Acta ; 1817(9): 1691-700, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22659402

RESUMEN

The decline in activity energy expenditure underlies a range of age-associated pathological conditions, neuromuscular and neurological impairments, disability, and mortality. The majority (90%) of the energy needs of the human body are met by mitochondrial oxidative phosphorylation (OXPHOS). OXPHOS is dependent on the coordinated expression and interaction of genes encoded in the nuclear and mitochondrial genomes. We examined the role of mitochondrial genomic variation in free-living activity energy expenditure (AEE) and physical activity levels (PAL) by sequencing the entire (~16.5 kilobases) mtDNA from 138 Health, Aging, and Body Composition Study participants. Among the common mtDNA variants, the hypervariable region 2 m.185G>A variant was significantly associated with AEE (p=0.001) and PAL (p=0.0005) after adjustment for multiple comparisons. Several unique nonsynonymous variants were identified in the extremes of AEE with some occurring at highly conserved sites predicted to affect protein structure and function. Of interest is the p.T194M, CytB substitution in the lower extreme of AEE occurring at a residue in the Qi site of complex III. Among participants with low activity levels, the burden of singleton variants was 30% higher across the entire mtDNA and OXPHOS complex I when compared to those having moderate to high activity levels. A significant pooled variant association across the hypervariable 2 region was observed for AEE and PAL. These results suggest that mtDNA variation is associated with free-living AEE in older persons and may generate new hypotheses by which specific mtDNA complexes, genes, and variants may contribute to the maintenance of activity levels in late life.


Asunto(s)
ADN Mitocondrial/química , Metabolismo Energético , Actividades Cotidianas , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Fosforilación Oxidativa , Estudios Prospectivos , Análisis de Secuencia de ADN
8.
Eur Urol ; 83(2): 112-120, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36123219

RESUMEN

BACKGROUND: BRCA2 alterations predict for a response to poly-ADP-ribose polymerase inhibition in metastatic castration-resistant prostate cancer (mCRPC). However, detection is hindered by insufficient tumor tissue and low sensitivity of cell-free DNA for detecting copy number loss. OBJECTIVE: To evaluate the BRCA2 loss detection using single-cell, shallow whole-genome sequencing (sWGS) of circulating tumor cells (CTCs) in patients with mCRPC. DESIGN, SETTING, AND PARTICIPANTS: We analyzed CTC samples collected concurrently with tumor biopsies intended for clinical sequencing in patients with progressing mCRPC. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Differences in proportions were evaluated using the chi-square test. Correlations between assays were analyzed in linear regression models. Associations between alterations and genomic instability were assessed on the single-cell level using mixed-effect negative binomial models. RESULTS AND LIMITATIONS: We identified 138 patients with concurrent CTC and biopsy samples. CTC sWGS generated copy number profiles in a similar proportion of patients to biopsy samples (83% vs 78%, p = 0.23), but was more effective than bone biopsies (79% vs 50%; p = 0.009). CTC sWGS detected BRCA2 loss in more patients than tissue at the ≥1 (42% vs 16%; p < 0.001) and ≥2 (27% vs 16%; p = 0.028) CTC thresholds. The overall prevalence of BRCA2 loss was not increased in CTCs using sample-level composite z scores (p = 0.4), but was significantly increased compared with a lower-than-expected prevalence in bone samples (21% vs 3%, p = 0.014). Positive/negative predictive values for CTC BRCA2 loss were 89%/96% using the ≥1 CTC threshold and 67%/92% using the composite z score. CTC BRCA2 loss was associated with higher genomic instability in univariate (1.4-fold large-scale transition difference, 95% confidence interval [CI]: 1.2-1.6; p < 0.001) and multivariable analysis (1.4-fold difference, 95% CI: 1.2-1.6; p < 0.001). CONCLUSIONS: Copy number profiles can reliably be generated using CTC sWGS, which detected a majority of tissue-confirmed BRCA2 loss and "CTC-only" losses. BRCA2 losses were supported by increases in genomic instability. PATIENT SUMMARY: Current testing strategies have limitations in their ability to detect BRCA2 loss, a relatively common alteration in prostate cancer that is used to identify patients who may benefit from targeted therapy. In this paper, we evaluated whether we could detect BRCA2 loss in individual tumor cells isolated from patient blood samples and found this method to be suitable for further analysis.


Asunto(s)
Células Neoplásicas Circulantes , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Células Neoplásicas Circulantes/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Variaciones en el Número de Copia de ADN , Biomarcadores de Tumor/genética , Inestabilidad Genómica , Proteína BRCA2/genética
9.
BMC Med Genet ; 12: 167, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22185198

RESUMEN

BACKGROUND: Mutations in the ZNF750 promoter and coding regions have been previously associated with Mendelian forms of psoriasis and psoriasiform dermatitis. ZNF750 encodes a putative zinc finger transcription factor that is highly expressed in keratinocytes and represents a candidate psoriasis gene. METHODS: We examined whether ZNF750 variants were associated with psoriasis in a large case-control population. We sequenced the promoter and exon regions of ZNF750 in 716 Caucasian psoriasis cases and 397 Caucasian controls. RESULTS: We identified a total of 47 variants, including 38 rare variants of which 35 were novel. Association testing identified two ZNF750 haplotypes associated with psoriasis (p < 0.05). We also identified an excess of rare promoter and 5'untranslated region (UTR) variants in psoriasis cases compared to controls (p = 0.041), whereas there was no significant difference in the number of rare coding and rare 3' UTR variants. Using a promoter functional assay in stimulated human primary keratinocytes, we showed that four ZNF750 promoter and 5' UTR variants displayed a 35-55% reduction of ZNF750 promoter activity, consistent with the promoter activity reduction seen in a Mendelian psoriasis family with a ZNF750 promoter variant. However, the rare promoter and 5' UTR variants identified in this study did not strictly segregate with the psoriasis phenotype within families. CONCLUSIONS: Two haplotypes of ZNF750 and rare 5' regulatory variants of ZNF750 were found to be associated with psoriasis. These rare 5' regulatory variants, though not causal, might serve as a genetic modifier of psoriasis.


Asunto(s)
Regiones Promotoras Genéticas/genética , Psoriasis/genética , Factores de Transcripción/genética , Dedos de Zinc/genética , Secuencia de Bases , Estudios de Casos y Controles , Cartilla de ADN/genética , Estudios de Asociación Genética , Haplotipos/genética , Humanos , Luciferasas , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Transfección , Proteínas Supresoras de Tumor , Población Blanca/genética
10.
Nat Commun ; 10(1): 1025, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833565

RESUMEN

Large structural variants (SVs) in the human genome are difficult to detect and study by conventional sequencing technologies. With long-range genome analysis platforms, such as optical mapping, one can identify large SVs (>2 kb) across the genome in one experiment. Analyzing optical genome maps of 154 individuals from the 26 populations sequenced in the 1000 Genomes Project, we find that phylogenetic population patterns of large SVs are similar to those of single nucleotide variations in 86% of the human genome, while ~2% of the genome has high structural complexity. We are able to characterize SVs in many intractable regions of the genome, including segmental duplications and subtelomeric, pericentromeric, and acrocentric areas. In addition, we discover ~60 Mb of non-redundant genome content missing in the reference genome sequence assembly. Our results highlight the need for a comprehensive set of alternate haplotypes from different populations to represent SV patterns in the genome.


Asunto(s)
Mapeo Cromosómico , Genoma Humano , Variación Estructural del Genoma , Algoritmos , Secuencia de Bases , Mapeo Cromosómico/métodos , Cromosomas Humanos Y , Biología Computacional , Femenino , Dosificación de Gen , Ligamiento Genético , Genómica , Humanos , Masculino , Mutación , Filogenia , Duplicaciones Segmentarias en el Genoma/genética , Análisis de Secuencia de ADN
11.
Nat Commun ; 10(1): 1784, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992455

RESUMEN

The incomplete identification of structural variants (SVs) from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long-read, short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel variants (<50 bp) and 27,622 SVs (≥50 bp) per genome. We also discover 156 inversions per genome and 58 of the inversions intersect with the critical regions of recurrent microdeletion and microduplication syndromes. Taken together, our SV callsets represent a three to sevenfold increase in SV detection compared to most standard high-throughput sequencing studies, including those from the 1000 Genomes Project. The methods and the dataset presented serve as a gold standard for the scientific community allowing us to make recommendations for maximizing structural variation sensitivity for future genome sequencing studies.


Asunto(s)
Genoma Humano/genética , Variación Estructural del Genoma , Genómica/métodos , Haplotipos/genética , Algoritmos , Mapeo Cromosómico/métodos , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación INDEL , Secuenciación Completa del Genoma/métodos
12.
Science ; 360(6393)2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29880660

RESUMEN

Genetic studies of human evolution require high-quality contiguous ape genome assemblies that are not guided by the human reference. We coupled long-read sequence assembly and full-length complementary DNA sequencing with a multiplatform scaffolding approach to produce ab initio chimpanzee and orangutan genome assemblies. By comparing these with two long-read de novo human genome assemblies and a gorilla genome assembly, we characterized lineage-specific and shared great ape genetic variation ranging from single- to mega-base pair-sized variants. We identified ~17,000 fixed human-specific structural variants identifying genic and putative regulatory changes that have emerged in humans since divergence from nonhuman apes. Interestingly, these variants are enriched near genes that are down-regulated in human compared to chimpanzee cerebral organoids, particularly in cells analogous to radial glial neural progenitors.


Asunto(s)
Evolución Molecular , Genoma Humano , Hominidae/genética , Animales , Mapeo Contig , Variación Genética , Humanos , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN
13.
Genome Biol ; 18(1): 230, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29195502

RESUMEN

We present a new method, OMSV, for accurately and comprehensively identifying structural variations (SVs) from optical maps. OMSV detects both homozygous and heterozygous SVs, SVs of various types and sizes, and SVs with or without creating or destroying restriction sites. We show that OMSV has high sensitivity and specificity, with clear performance gains over the latest method. Applying OMSV to a human cell line, we identified hundreds of SVs >2 kbp, with 68 % of them missed by sequencing-based callers. Independent experimental validation confirmed the high accuracy of these SVs. The OMSV software is available at http://yiplab.cse.cuhk.edu.hk/omsv/ .


Asunto(s)
Variación Estructural del Genoma , Genómica/métodos , Programas Informáticos , Biología Computacional/métodos , Simulación por Computador , Genoma Humano , Humanos
14.
Nat Genet ; 49(4): 643-650, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28263316

RESUMEN

The decrease in sequencing cost and increased sophistication of assembly algorithms for short-read platforms has resulted in a sharp increase in the number of species with genome assemblies. However, these assemblies are highly fragmented, with many gaps, ambiguities, and errors, impeding downstream applications. We demonstrate current state of the art for de novo assembly using the domestic goat (Capra hircus) based on long reads for contig formation, short reads for consensus validation, and scaffolding by optical and chromatin interaction mapping. These combined technologies produced what is, to our knowledge, the most continuous de novo mammalian assembly to date, with chromosome-length scaffolds and only 649 gaps. Our assembly represents a ∼400-fold improvement in continuity due to properly assembled gaps, compared to the previously published C. hircus assembly, and better resolves repetitive structures longer than 1 kb, representing the largest repeat family and immune gene complex yet produced for an individual of a ruminant species.


Asunto(s)
Cromatina/genética , Genoma/genética , Cabras/genética , Animales , Cromosomas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuencias Repetitivas de Ácidos Nucleicos/genética
15.
Nat Commun ; 7: 10164, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26836631

RESUMEN

The common bed bug (Cimex lectularius) has been a persistent pest of humans for thousands of years, yet the genetic basis of the bed bug's basic biology and adaptation to dense human environments is largely unknown. Here we report the assembly, annotation and phylogenetic mapping of the 697.9-Mb Cimex lectularius genome, with an N50 of 971 kb, using both long and short read technologies. A RNA-seq time course across all five developmental stages and male and female adults generated 36,985 coding and noncoding gene models. The most pronounced change in gene expression during the life cycle occurs after feeding on human blood and included genes from the Wolbachia endosymbiont, which shows a simultaneous and coordinated host/commensal response to haematophagous activity. These data provide a rich genetic resource for mapping activity and density of C. lectularius across human hosts and cities, which can help track, manage and control bed bug infestations.


Asunto(s)
Chinches/genética , Regulación del Desarrollo de la Expresión Génica , Estadios del Ciclo de Vida/genética , Animales , Sangre , Mapeo Cromosómico , Ingestión de Alimentos , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Modelos Moleculares , Filogenia , Análisis de Secuencia de ARN
16.
Genetics ; 202(1): 351-62, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26510793

RESUMEN

Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole-genome structural variation detection without sequencing. While whole-genome haplotyping is not achieved, local phasing (across >150-kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variations that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation.


Asunto(s)
Mapeo Cromosómico , Variación Estructural del Genoma , Análisis por Micromatrices/métodos , Línea Celular , Genoma Humano , Humanos
17.
J Gerontol A Biol Sci Med Sci ; 70(11): 1418-24, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26328603

RESUMEN

BACKGROUND: Mitochondrial DNA (mtDNA) heteroplasmy is a mixture of normal and mutated mtDNA molecules in a cell. High levels of heteroplasmy at specific mtDNA sites lead to inherited mitochondrial diseases with neurological, sensory, and movement impairments. Here we test the hypothesis that heteroplasmy levels in elderly adults are associated with impaired function resembling mild forms of mitochondrial disease. METHODS: We examined platelet mtDNA heteroplasmy at 20 disease-causing sites for associations with neurosensory and mobility function among 137 participants from the community-based Health, Aging, and Body Composition Study. RESULTS: Elevated mtDNA heteroplasmy at four mtDNA sites in complex I and tRNA genes was nominally associated with reduced cognition, vision, hearing, and mobility: m.10158T>C with Modified Mini-Mental State Examination score (p = .009); m.11778G>A with contrast sensitivity (p = .02); m.7445A>G with high-frequency hearing (p = .047); and m.5703G>A with 400 m walking speed (p = .007). CONCLUSIONS: These results indicate that increased mtDNA heteroplasmy at disease-causing sites is associated with neurosensory and mobility function in older persons. We propose the novel use of mtDNA heteroplasmy as a simple, noninvasive predictor of age-related neurologic, sensory, and movement impairments.


Asunto(s)
Trastornos del Conocimiento/genética , ADN Mitocondrial/genética , Trastornos Neurológicos de la Marcha/genética , Enfermedades Mitocondriales/genética , Trastornos de la Sensación/genética , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Limitación de la Movilidad
18.
BMC Res Notes ; 7: 360, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24924344

RESUMEN

BACKGROUND: The goal of this study was to perform candidate gene association with cytotoxicity of chemotherapeutics in cell line models through resequencing and discovery of rare and low frequency variants along with common variations. Here, an association study of cytotoxicity response to 30 FDA approved drugs was conducted and we applied next generation targeted sequencing technology to discover variants from 103 candidate genes in 95 lymphoblastoid cell lines from 14 CEPH pedigrees. In this article, we called variants across 95 cell lines and performed association analysis for cytotoxic response using the Family Based Association Testing method and software. RESULTS: We called 2281 variable SNP genotypes across the 103 genes for these cell lines and identified three genes of significant association within this marker set. Specifically, ATP-binding cassette, sub-family C, member 5 (ABCC5), metallothionein 1A (MT1A) and NAD(P)H dehydrogenase quinone1 (NQO1) were significantly associated with oxaliplatin drug response. The significant SNP on NQO1 (rs1800566) has been linked with poor survival rates in patients with non-small cell lung cancer treated with cisplatin (which belongs to the same class of drugs as oxaliplatin). A SNP (rs1846692) near the 5' region of MT1A was associated with arsenic trioxide. CONCLUSIONS: The results from this study are promising and this serves as a proof-of-principle demonstration of the use of sequencing data in the cytotoxicity models of human cell lines. With increased sample sizes, such studies will be a fast and powerful way to associate common and rare variants with drug response; while overcoming the cost and time limitations to recruit cohorts for association study.


Asunto(s)
Antineoplásicos , Aprobación de Drogas , Polimorfismo de Nucleótido Simple , Línea Celular , Humanos , Estados Unidos , United States Food and Drug Administration
19.
Gigascience ; 3(1): 34, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25671094

RESUMEN

BACKGROUND: Structural variants (SVs) are less common than single nucleotide polymorphisms and indels in the population, but collectively account for a significant fraction of genetic polymorphism and diseases. Base pair differences arising from SVs are on a much higher order (>100 fold) than point mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost-effective genome mapping technology to comprehensively discover genome-wide SVs and characterize complex regions of the YH genome using long single molecules (>150 kb) in a global fashion. RESULTS: Utilizing nanochannel-based genome mapping technology, we obtained 708 insertions/deletions and 17 inversions larger than 1 kb. Excluding the 59 SVs (54 insertions/deletions, 5 inversions) that overlap with N-base gaps in the reference assembly hg19, 666 non-gap SVs remained, and 396 of them (60%) were verified by paired-end data from whole-genome sequencing-based re-sequencing or de novo assembly sequence from fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides valuable information for complex regions with haplotypes in a straightforward fashion. In addition, with long single-molecule labeling patterns, exogenous viral sequences were mapped on a whole-genome scale, and sample heterogeneity was analyzed at a new level. CONCLUSION: Our study highlights genome mapping technology as a comprehensive and cost-effective method for detecting structural variation and studying complex regions in the human genome, as well as deciphering viral integration into the host genome.

20.
PLoS One ; 8(2): e55864, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405223

RESUMEN

Next-generation sequencing (NGS) technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences and to facilitate unambiguous assembly. Plant genomes are notorious for containing high quantities of repetitive elements, which combined with huge genome sizes, makes accurate assembly of these large and complex genomes intractable thus far. Using two-color genome mapping of tiling bacterial artificial chromosomes (BAC) clones on nanochannel arrays, we completed high-confidence assembly of a 2.1-Mb, highly repetitive region in the large and complex genome of Aegilops tauschii, the D-genome donor of hexaploid wheat (Triticum aestivum). Genome mapping is based on direct visualization of sequence motifs on single DNA molecules hundreds of kilobases in length. With the genome map as a scaffold, we anchored unplaced sequence contigs, validated the initial draft assembly, and resolved instances of misassembly, some involving contigs <2 kb long, to dramatically improve the assembly from 75% to 95% complete.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Nanotecnología/instrumentación , Triticum/genética , Cromosomas Artificiales Bacterianos , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA