Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 31(6): 964-976, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38789684

RESUMEN

The mouse and human embryo gradually loses totipotency before diversifying into the inner cell mass (ICM, future organism) and trophectoderm (TE, future placenta). The transcription factors TFAP2C and TEAD4 with activated RHOA accelerate embryo polarization. Here we show that these factors also accelerate the loss of totipotency. TFAP2C and TEAD4 paradoxically promote and inhibit Hippo signaling before lineage diversification: they drive expression of multiple Hippo regulators while also promoting apical domain formation, which inactivates Hippo. Each factor activates TE specifiers in bipotent cells, while TFAP2C also activates specifiers of the ICM fate. Asymmetric segregation of the apical domain reconciles the opposing regulation of Hippo signaling into Hippo OFF and the TE fate, or Hippo ON and the ICM fate. We propose that the bistable switch established by TFAP2C and TEAD4 is exploited to trigger robust lineage diversification in the developing embryo.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción de Dominio TEA , Factor de Transcripción AP-2 , Factores de Transcripción , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , Animales , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ratones , Humanos , Transducción de Señal , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/citología , Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Desarrollo Embrionario/genética
2.
Curr Top Dev Biol ; 154: 169-196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37100517

RESUMEN

The first cell fate decision is the process by which cells of an embryo take on distinct lineage identities for the first time, representing the beginning of patterning during development. In mammals, this process separates an embryonic inner cell mass lineage (future new organism) from an extra-embryonic trophectoderm lineage (future placenta), and in the mouse, this is classically attributed to the consequences of apical-basal polarity. The mouse embryo acquires this polarity at the 8-cell stage, indicated by cap-like protein domains on the apical surface of each cell; those cells which retain polarity over subsequent divisions are specified as trophectoderm, and the rest as inner cell mass. Recent research has advanced our knowledge of this process - this review will discuss mechanisms behind the establishment of polarity and distribution of the apical domain, different factors affecting the first cell fate decision including heterogeneities between cells of the very early embryo, and the conservation of developmental mechanisms across species, including human.


Asunto(s)
Blastocisto , Embrión de Mamíferos , Animales , Ratones , Humanos , Linaje de la Célula , Diferenciación Celular , Polaridad Celular , Mamíferos
3.
Sci Rep ; 12(1): 2404, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165311

RESUMEN

Polarization of the mammalian embryo at the right developmental time is critical for its development to term and would be valuable in assessing the potential of human embryos. However, tracking polarization requires invasive fluorescence staining, impermissible in the in vitro fertilization clinic. Here, we report the use of artificial intelligence to detect polarization from unstained time-lapse movies of mouse embryos. We assembled a dataset of bright-field movie frames from 8-cell-stage embryos, side-by-side with corresponding images of fluorescent markers of cell polarization. We then used an ensemble learning model to detect whether any bright-field frame showed an embryo before or after onset of polarization. Our resulting model has an accuracy of 85% for detecting polarization, significantly outperforming human volunteers trained on the same data (61% accuracy). We discovered that our self-learning model focuses upon the angle between cells as one known cue for compaction, which precedes polarization, but it outperforms the use of this cue alone. By compressing three-dimensional time-lapsed image data into two-dimensions, we are able to reduce data to an easily manageable size for deep learning processing. In conclusion, we describe a method for detecting a key developmental feature of embryo development that avoids clinically impermissible fluorescence staining.


Asunto(s)
Polaridad Celular , Aprendizaje Profundo , Embrión de Mamíferos/citología , Animales , Colorantes/química , Embrión de Mamíferos/química , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Fertilización In Vitro , Humanos , Ratones , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA