Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
PLoS Genet ; 18(1): e1010016, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089924

RESUMEN

The functional properties of neural circuits are defined by the patterns of synaptic connections between their partnering neurons, but the mechanisms that stabilize circuit connectivity are poorly understood. We systemically examined this question at synapses onto newly characterized dendritic spines of C. elegans GABAergic motor neurons. We show that the presynaptic adhesion protein neurexin/NRX-1 is required for stabilization of postsynaptic structure. We find that early postsynaptic developmental events proceed without a strict requirement for synaptic activity and are not disrupted by deletion of neurexin/nrx-1. However, in the absence of presynaptic NRX-1, dendritic spines and receptor clusters become destabilized and collapse prior to adulthood. We demonstrate that NRX-1 delivery to presynaptic terminals is dependent on kinesin-3/UNC-104 and show that ongoing UNC-104 function is required for postsynaptic maintenance in mature animals. By defining the dynamics and temporal order of synapse formation and maintenance events in vivo, we describe a mechanism for stabilizing mature circuit connectivity through neurexin-based adhesion.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Axones/metabolismo , Espinas Dendríticas/metabolismo , Terminales Presinápticos/metabolismo
3.
Development ; 144(10): 1807-1819, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28420711

RESUMEN

Establishing and maintaining the appropriate number of GABA synapses is key for balancing excitation and inhibition in the nervous system, though we have only a limited understanding of the mechanisms controlling GABA circuit connectivity. Here, we show that disrupting cholinergic innervation of GABAergic neurons in the C. elegans motor circuit alters GABAergic neuron synaptic connectivity. These changes are accompanied by reduced frequency and increased amplitude of GABAergic synaptic events. Acute genetic disruption in early development, during the integration of post-embryonic-born GABAergic neurons into the circuit, produces irreversible effects on GABAergic synaptic connectivity that mimic those produced by chronic manipulations. In contrast, acute genetic disruption of cholinergic signaling in the adult circuit does not reproduce these effects. Our findings reveal that GABAergic signaling is regulated by cholinergic neuronal activity, probably through distinct mechanisms in the developing and mature nervous system.


Asunto(s)
Caenorhabditis elegans/fisiología , Neuronas Colinérgicas/fisiología , Neuronas GABAérgicas/fisiología , Neuronas Motoras/fisiología , Red Nerviosa/fisiología , Sinapsis/fisiología , Transmisión Sináptica , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/fisiología , Caenorhabditis elegans/citología , Neuronas Colinérgicas/citología , Neuronas Motoras/citología , Red Nerviosa/citología , Neurogénesis/fisiología , Unión Neuromuscular/citología , Unión Neuromuscular/fisiología , Transducción de Señal/fisiología
4.
PLoS Genet ; 10(8): e1004584, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25167143

RESUMEN

An organism's ability to thrive in changing environmental conditions requires the capacity for making flexible behavioral responses. Here we show that, in the nematode Caenorhabditis elegans, foraging responses to changes in food availability require nlp-12, a homolog of the mammalian neuropeptide cholecystokinin (CCK). nlp-12 expression is limited to a single interneuron (DVA) that is postsynaptic to dopaminergic neurons involved in food-sensing, and presynaptic to locomotory control neurons. NLP-12 release from DVA is regulated through the D1-like dopamine receptor DOP-1, and both nlp-12 and dop-1 are required for normal local food searching responses. nlp-12/CCK overexpression recapitulates characteristics of local food searching, and DVA ablation or mutations disrupting muscle acetylcholine receptor function attenuate these effects. Conversely, nlp-12 deletion reverses behavioral and functional changes associated with genetically enhanced muscle acetylcholine receptor activity. Thus, our data suggest that dopamine-mediated sensory information about food availability shapes foraging in a context-dependent manner through peptide modulation of locomotory output.


Asunto(s)
Conducta Animal , Proteínas de Caenorhabditis elegans/genética , Colecistoquinina/metabolismo , Dopamina/metabolismo , Receptores de Dopamina D1/genética , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Colecistoquinina/genética , Dopamina/genética , Neuronas Dopaminérgicas , Mutación , Receptores Dopaminérgicos , Receptores de Dopamina D1/metabolismo , Transducción de Señal/genética , Transmisión Sináptica
5.
Proc Natl Acad Sci U S A ; 108(41): 17219-24, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21969555

RESUMEN

The circadian clock in the mammalian hypothalamic suprachiasmatic nucleus (SCN) is entrained by the ambient light/dark cycle, which differentially acts to cause the clock to advance or delay. Light-induced changes in the rhythmic expression of SCN clock genes are believed to be a critical step in this process, but how the two entrainment modalities--advances vs. delays--engage the molecular clockwork remains incompletely understood. We investigated molecular substrates of photic entrainment of the clock in the SCN by stably entraining hamsters to T cycles (non-24-h light/dark cycles) consisting of a single 1-h light pulse repeated as either a short (23.33-h) or a long (24.67-h) cycle; under these conditions, the light pulse of the short cycle acts as "dawn," whereas that of the long cycle acts as "dusk." Analyses of the expression of the photoinducible and rhythmic clock genes Period 1 and 2 (Per1 and Per2) in the SCN revealed fundamental differences under these two entrainment modes. Light at dawn advanced the clock, advancing the onset of the Per1 mRNA rhythm and acutely increasing mRNA transcription, whereas light at dusk delayed the clock, delaying the offset of the Per2 mRNA rhythm and tonically increasing mRNA stability. The results suggest that the underlying molecular mechanisms of circadian entrainment differ with morning (advancing) or evening (delaying) light exposure, and such differences may reflect how entrainment takes place in nocturnal animals under natural conditions.


Asunto(s)
Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Proteínas Circadianas Period/genética , Núcleo Supraquiasmático/fisiología , Animales , Cricetinae , Expresión Génica , Masculino , Mesocricetus , Estimulación Luminosa , Fotoperiodo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Nat Commun ; 14(1): 7520, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980357

RESUMEN

The elimination of synapses during circuit remodeling is critical for brain maturation; however, the molecular mechanisms directing synapse elimination and its timing remain elusive. We show that the transcriptional regulator DVE-1, which shares homology with special AT-rich sequence-binding (SATB) family members previously implicated in human neurodevelopmental disorders, directs the elimination of juvenile synaptic inputs onto remodeling C. elegans GABAergic neurons. Juvenile acetylcholine receptor clusters and apposing presynaptic sites are eliminated during the maturation of wild-type GABAergic neurons but persist into adulthood in dve-1 mutants, producing heightened motor connectivity. DVE-1 localization to GABAergic nuclei is required for synapse elimination, consistent with DVE-1 regulation of transcription. Pathway analysis of putative DVE-1 target genes, proteasome inhibitor, and genetic experiments implicate the ubiquitin-proteasome system in synapse elimination. Together, our findings define a previously unappreciated role for a SATB family member in directing synapse elimination during circuit remodeling, likely through transcriptional regulation of protein degradation processes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/metabolismo , Sinapsis/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Receptores Colinérgicos/metabolismo , Neuronas GABAérgicas/metabolismo
7.
Am J Physiol Endocrinol Metab ; 303(6): E762-76, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22785238

RESUMEN

Insulinoma-associated protein (IA)-2 and IA-2ß are transmembrane proteins involved in neurotransmitter secretion. Mice with targeted disruption of both IA-2 and IA-2ß (double-knockout, or DKO mice) have numerous endocrine and physiological disruptions, including disruption of circadian and diurnal rhythms. In the present study, we have assessed the impact of disruption of IA-2 and IA-2ß on molecular rhythms in the brain and peripheral oscillators. We used in situ hybridization to assess molecular rhythms in the hypothalamic suprachiasmatic nuclei (SCN) of wild-type (WT) and DKO mice. The results indicate significant disruption of molecular rhythmicity in the SCN, which serves as the central pacemaker regulating circadian behavior. We also used quantitative PCR to assess gene expression rhythms in peripheral tissues of DKO, single-knockout, and WT mice. The results indicate significant attenuation of gene expression rhythms in several peripheral tissues of DKO mice but not in either single knockout. To distinguish whether this reduction in rhythmicity reflects defective oscillatory function in peripheral tissues or lack of entrainment of peripheral tissues, animals were injected with dexamethasone daily for 15 days, and then molecular rhythms were assessed throughout the day after discontinuation of injections. Dexamethasone injections improved gene expression rhythms in liver and heart of DKO mice. These results are consistent with the hypothesis that peripheral tissues of DKO mice have a functioning circadian clockwork, but rhythmicity is greatly reduced in the absence of robust, rhythmic physiological signals originating from the SCN. Thus, IA-2 and IA-2ß play an important role in the regulation of circadian rhythms, likely through their participation in neurochemical communication among SCN neurons.


Asunto(s)
Ritmo Circadiano , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/metabolismo , Vesículas Secretoras/metabolismo , Núcleo Supraquiasmático/metabolismo , Animales , Ritmo Circadiano/efectos de los fármacos , Cruzamientos Genéticos , Dexametasona/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Corazón/efectos de los fármacos , Corazón/inervación , Hígado/efectos de los fármacos , Hígado/inervación , Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Especificidad de Órganos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/genética , Vesículas Secretoras/efectos de los fármacos
8.
Elife ; 102021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34766905

RESUMEN

Neuromodulators promote adaptive behaviors that are often complex and involve concerted activity changes across circuits that are often not physically connected. It is not well understood how neuromodulatory systems accomplish these tasks. Here, we show that the Caenorhabditis elegans NLP-12 neuropeptide system shapes responses to food availability by modulating the activity of head and body wall motor neurons through alternate G-protein coupled receptor (GPCR) targets, CKR-1 and CKR-2. We show ckr-2 deletion reduces body bend depth during movement under basal conditions. We demonstrate CKR-1 is a functional NLP-12 receptor and define its expression in the nervous system. In contrast to basal locomotion, biased CKR-1 GPCR stimulation of head motor neurons promotes turning during local searching. Deletion of ckr-1 reduces head neuron activity and diminishes turning while specific ckr-1 overexpression or head neuron activation promote turning. Thus, our studies suggest locomotor responses to changing food availability are regulated through conditional NLP-12 stimulation of head or body wall motor circuits.


Asunto(s)
Adaptación Psicológica , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Neuropéptidos/genética , Receptores Acoplados a Proteínas G/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Locomoción/genética , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/genética
9.
Neuron ; 50(3): 465-77, 2006 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-16675400

RESUMEN

The circadian clock mechanism in the mouse is composed of interlocking transcriptional feedback loops. Two transcription factors, CLOCK and BMAL1, are believed to be essential components of the circadian clock. We have used the Cre-LoxP system to generate whole-animal knockouts of CLOCK and evaluated the resultant circadian phenotypes. Surprisingly, CLOCK-deficient mice continue to express robust circadian rhythms in locomotor activity, although they do have altered responses to light. At the molecular and biochemical levels, clock gene mRNA and protein levels in both the master clock in the suprachiasmatic nuclei and a peripheral clock in the liver show alterations in the CLOCK-deficient animals, although the molecular feedback loops continue to function. Our data challenge a central feature of the current mammalian circadian clock model regarding the necessity of CLOCK:BMAL1 heterodimers for clock function.


Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano/genética , Núcleo Supraquiasmático/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Relojes Biológicos/efectos de la radiación , Proteínas CLOCK , Ritmo Circadiano/efectos de la radiación , Dimerización , Retroalimentación Fisiológica/genética , Luz , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Fenotipo , Estimulación Luminosa , ARN Mensajero/metabolismo , Núcleo Supraquiasmático/citología
10.
Elife ; 72018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30039797

RESUMEN

In neural circuits, individual neurons often make projections onto multiple postsynaptic partners. Here, we investigate molecular mechanisms by which these divergent connections are generated, using dyadic synapses in C. elegans as a model. We report that C. elegans nrx-1/neurexin directs divergent connectivity through differential actions at synapses with partnering neurons and muscles. We show that cholinergic outputs onto neurons are, unexpectedly, located at previously undefined spine-like protrusions from GABAergic dendrites. Both these spine-like features and cholinergic receptor clustering are strikingly disrupted in the absence of nrx-1. Excitatory transmission onto GABAergic neurons, but not neuromuscular transmission, is also disrupted. Our data indicate that NRX-1 located at presynaptic sites specifically directs postsynaptic development in GABAergic neurons. Our findings provide evidence that individual neurons can direct differential patterns of connectivity with their post-synaptic partners through partner-specific utilization of synaptic organizers, offering a novel view into molecular control of divergent connectivity.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Neuronas GABAérgicas/fisiología , Unión Neuromuscular/fisiología , Transmisión Sináptica , Acetilcolina/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular Neuronal/genética , Neuronas GABAérgicas/citología , Unión Neuromuscular/citología , Receptores Colinérgicos , Receptores Nicotínicos/metabolismo , Sinapsis
11.
J Biol Rhythms ; 20(3): 206-18, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15851527

RESUMEN

Prokineticin 2 (PK2) is a putative output molecule from the SCN. PK2 RNA levels are rhythmic in the mouse SCN, with high levels during the day, and PK2 administration suppresses nocturnal locomotor activity in rats. The authors examined the PK2 system in a diurnal rodent, Arvicanthis niloticus, to determine whether PK2 or PK2 receptors differ between diurnal and nocturnal species. The major transcript variant of A. niloticus PK2 (AnPK2) encodes a 26-residue signal peptide followed by the presumed mature peptide of 81 residues. Within the grass rat signal sequence, polymorphic sequences and amino acid substitutions were observed relative to mouse and laboratory rats, but the hydrophobic core and cleavage site of the signal sequence were preserved. The mature PK2 peptide is identical among A. niloticus, rat, and mouse. AnPK2 mRNA is rhythmically expressed in the SCN, with peak RNA levels occurring in the morning, preceding peaks of Per1 and Per2 as in mouse SCN. Analysis of prokineticin receptor 2 (PKR2) sequences revealed polymorphisms among the grass rats studied. PKR2 mRNA was expressed in the SCN and paraventricular nuclei of the thalamus and hypothalamus. While further analysis is necessary, there is no clear evidence indicating that a difference in the PK2 ligand/receptor system accounts for diurnality in this rodent species. These data contribute to a growing body of evidence suggesting that the key to diurnality lies downstream of the SCN in A. niloticus.


Asunto(s)
Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica/fisiología , Secuencia de Aminoácidos , Animales , Química Encefálica/genética , ADN Complementario/biosíntesis , ADN Complementario/genética , Hibridación in Situ , Luz , Masculino , Datos de Secuencia Molecular , Polimorfismo Genético/genética , Ratas , Roedores , Transcripción Genética , Factor de Crecimiento Endotelial Vascular Derivado de Glándula Endocrina/biosíntesis , Factor de Crecimiento Endotelial Vascular Derivado de Glándula Endocrina/genética
13.
PLoS One ; 7(4): e35938, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22558277

RESUMEN

Research on the mechanisms underlying circadian rhythmicity and the response of brain and body clocks to environmental and physiological challenges requires assessing levels of circadian clock proteins. Too often, however, it is difficult to acquire antibodies that specifically and reliably label these proteins. Many of these antibodies also lack appropriate validation. The goal of this project was to generate and characterize antibodies against several circadian clock proteins. We examined mice and hamsters at peak and trough times of clock protein expression in the suprachiasmatic nucleus (SCN). In addition, we confirmed specificity by testing the antibodies on mice with targeted disruption of the relevant genes. Our results identify antibodies against PER1, PER2, BMAL1 and CLOCK that are useful for assessing circadian clock proteins in the SCN by immunocytochemistry.


Asunto(s)
Anticuerpos/inmunología , Proteínas CLOCK/inmunología , Relojes Circadianos/inmunología , Núcleo Supraquiasmático/metabolismo , Animales , Cricetinae , Masculino , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Coloración y Etiquetado , Núcleo Supraquiasmático/citología
14.
Mol Cell Biol ; 29(14): 3853-66, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19414593

RESUMEN

Both casein kinase 1 delta (CK1delta) and epsilon (CK1epsilon) phosphorylate core clock proteins of the mammalian circadian oscillator. To assess the roles of CK1delta and CK1epsilon in the circadian clock mechanism, we generated mice in which the genes encoding these proteins (Csnk1d and Csnk1e, respectively) could be disrupted using the Cre-loxP system. Cre-mediated excision of the floxed exon 2 from Csnk1d led to in-frame splicing and production of a deletion mutant protein (CK1delta(Delta2)). This product is nonfunctional. Mice homozygous for the allele lacking exon 2 die in the perinatal period, so we generated mice with liver-specific disruption of CK1delta. In livers from these mice, daytime levels of nuclear PER proteins, and PER-CRY-CLOCK complexes were elevated. In vitro, the half-life of PER2 was increased by approximately 20%, and the period of PER2::luciferase bioluminescence rhythms was 2 h longer than in controls. Fibroblast cultures from CK1delta-deficient embryos also had long-period rhythms. In contrast, disruption of the gene encoding CK1epsilon did not alter these circadian endpoints. These results reveal important functional differences between CK1delta and CK1epsilon: CK1delta plays an unexpectedly important role in maintaining the 24-h circadian cycle length.


Asunto(s)
Quinasa Idelta de la Caseína/fisiología , Ritmo Circadiano/fisiología , Animales , Secuencia de Bases , Proteínas CLOCK , Caseína Cinasa 1 épsilon/deficiencia , Caseína Cinasa 1 épsilon/genética , Caseína Cinasa 1 épsilon/fisiología , Quinasa Idelta de la Caseína/deficiencia , Quinasa Idelta de la Caseína/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Ritmo Circadiano/genética , Criptocromos , Cartilla de ADN/genética , Femenino , Fibroblastos/metabolismo , Flavoproteínas/metabolismo , Semivida , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA