Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 623(7986): 301-306, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938707

RESUMEN

Electronic flat-band materials host quantum states characterized by a quenched kinetic energy. These flat bands are often conducive to enhanced electron correlation effects and emergent quantum phases of matter1. Long studied in theoretical models2-4, these systems have received renewed interest after their experimental realization in van der Waals heterostructures5,6 and quasi-two-dimensional (2D) crystalline materials7,8. An outstanding experimental question is if such flat bands can be realized in three-dimensional (3D) networks, potentially enabling new materials platforms9,10 and phenomena11-13. Here we investigate the C15 Laves phase metal CaNi2, which contains a nickel pyrochlore lattice predicted at a model network level to host a doubly-degenerate, topological flat band arising from 3D destructive interference of electronic hopping14,15. Using angle-resolved photoemission spectroscopy, we observe a band with vanishing dispersion across the full 3D Brillouin zone that we identify with the pyrochlore flat band as well as two additional flat bands that we show arise from multi-orbital interference of Ni d-electrons. Furthermore, we demonstrate chemical tuning of the flat-band manifold to the Fermi level that coincides with enhanced electronic correlations and the appearance of superconductivity. Extending the notion of intrinsic band flatness from 2D to 3D, this provides a potential pathway to correlated behaviour predicted for higher-dimensional flat-band systems ranging from tunable topological15 to fractionalized phases16.

2.
ACS Appl Mater Interfaces ; 15(50): 58984-58993, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38051915

RESUMEN

Aluminum hydroxide, an abundant mineral found in nature, exists in four polymorphs: gibbsite, bayerite, nordstrandite, and doyleite. Among these polymorphs gibbsite, bayerite, and commercially synthesized amorphous aluminum hydroxide have been investigated as sorbent materials for lithium extraction from sulfate solutions. The amorphous form of Al(OH)3 exhibits a reactivity higher than that of the naturally occurring crystalline polymorphs in terms of extracting Li+ ions. This study employed high-temperature oxide melt solution calorimetry to explore the energetics of the sorbent polymorphs. The enthalpic stability order was measured to be gibbsite > bayerite > amorphous Al(OH)3. The least stable form, amorphous Al(OH)3, undergoes a spontaneous reaction with lithium, resulting in the formation of a stable layered double hydroxide phase. Consequently, amorphous Al(OH)3 shows promise as a sorbent material for selectively extracting lithium from clay mineral leachate solutions. This research demonstrates the selective direct extraction of Li+ ions using amorphous aluminum hydroxide through a liquid-solid lithiation reaction, followed by acid-free delithiation and relithiation processes, achieving an extraction efficiency of 86%, and the maximum capacity was 37.86 mg·g-1 in a single step during lithiation. With high selectivity during lithiation and nearly complete recoverability of the sorbent material during delithiation, this method presents a circular economy model. Furthermore, a life cycle analysis was conducted to illustrate the environmental advantages of replacing the conventional soda ash-based precipitation process with this method, along with a simple operational cost analysis to evaluate reagent and fuel expenses.

3.
ACS Appl Polym Mater ; 3(2): 1022-1031, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37556233

RESUMEN

The current severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) pandemic has highlighted the need for personal protective equipment, specifically filtering facepiece respirators like N95 masks. While it is common knowledge that polypropylene (PP) is the industry standard material for filtration media, trial and error is often required to identify suitable commercial precursors for filtration media production. This work aims to identify differences between several commercial grades of PP and demonstrate the development of N95 filtration media with the intent that the industry partners can pivot and help address N95 shortages. Three commercial grades of high melt flow index PP were melt blown at Oak Ridge National Laboratory and broadly characterized by several methods including differential scanning calorimetry (DSC), X-ray diffraction (XRD), and neutron scattering. Despite the apparent similarities (high melt flow and isotacticity) between PP feedstocks, the application of corona charging and charge enhancing additives improve each material to widely varying degrees. From the analysis performed here, the most differentiating factor appears to be related to crystallization of the polymer and the resulting electret formation. Materials with higher crystallization onset temperatures, slower crystallization rates, and larger number of crystallites form a stronger electret and are more effective at filtration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA