Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(4): 760-762, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32413297

RESUMEN

Skin and other epithelial cell layers are frequently subjected to extensive deformations, yet sustain such mechanical stress without damage. In this issue of Cell, Nava and colleagues show that stretch induces rapid loss of heterochromatin that leads to transient softening of the nucleus, which, together with long-term cytoskeletal and supracellular rearrangements, protects nuclei from DNA damage.


Asunto(s)
Heterocromatina , Canales Iónicos , Núcleo Celular , Canales Iónicos/genética , Estrés Mecánico , Tiempo
2.
Nat Rev Mol Cell Biol ; 23(9): 583-602, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35513718

RESUMEN

As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.


Asunto(s)
Núcleo Celular , Cromatina , Diferenciación Celular , Núcleo Celular/genética , Cromatina/metabolismo , Citoesqueleto/metabolismo , Humanos , Transducción de Señal
3.
Mol Cell ; 83(20): 3588-3590, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37863026

RESUMEN

In this issue, Joo et al.1 and Kovacs et al.2 report that the ATR kinase promotes nuclear envelope rupture through the phosphorylation of Lamin A/C, inducing processes such as cGAS-STING pathway activation, micronuclei clearance, and potentially cell death.


Asunto(s)
Membrana Nuclear , Nucleotidiltransferasas , Membrana Nuclear/metabolismo , Nucleotidiltransferasas/metabolismo , Fosforilación , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
4.
J Cell Sci ; 137(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38832512

RESUMEN

As cells migrate through biological tissues, they must frequently squeeze through micron-sized constrictions in the form of interstitial pores between extracellular matrix fibers and/or other cells. Although it is now well recognized that such confined migration is limited by the nucleus, which is the largest and stiffest organelle, it remains incompletely understood how cells apply sufficient force to move their nucleus through small constrictions. Here, we report a mechanism by which contraction of the cell rear cortex pushes the nucleus forward to mediate nuclear transit through constrictions. Laser ablation of the rear cortex reveals that pushing forces behind the nucleus are the result of increased intracellular pressure in the rear compartment of the cell. The pushing forces behind the nucleus depend on accumulation of actomyosin in the rear cortex and require Rho kinase (ROCK) activity. Collectively, our results suggest a mechanism by which cells generate elevated intracellular pressure in the posterior compartment to facilitate nuclear transit through three-dimensional (3D) constrictions. This mechanism might supplement or even substitute for other mechanisms supporting nuclear transit, ensuring robust cell migrations in confined 3D environments.


Asunto(s)
Movimiento Celular , Núcleo Celular , Núcleo Celular/metabolismo , Movimiento Celular/fisiología , Humanos , Actomiosina/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Presión , Ratones
5.
Nat Mater ; 23(3): 429-438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361041

RESUMEN

Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Glicocálix/metabolismo , Mucinas/metabolismo , Antineoplásicos/metabolismo , Neoplasias/terapia
6.
Nature ; 553(7689): 467-472, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29342134

RESUMEN

Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs.


Asunto(s)
Inestabilidad Cromosómica , Citosol/metabolismo , ADN de Neoplasias/metabolismo , Metástasis de la Neoplasia/genética , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/secundario , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular , Inestabilidad Cromosómica/genética , Segregación Cromosómica , Citosol/enzimología , Femenino , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Inflamación/genética , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , Mesodermo/metabolismo , Ratones , Micronúcleos con Defecto Cromosómico , FN-kappa B/metabolismo , Nucleotidiltransferasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Eur Biophys J ; 51(2): 157-169, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34713316

RESUMEN

Mammalian cells have evolved complex mechanical connections to their microenvironment, including focal adhesion clusters that physically connect the cytoskeleton and the extracellular matrix. This mechanical link is also part of the cellular machinery to transduce, sense and respond to external forces. Although methods to measure cell attachment and cellular traction forces are well established, these are not capable of quantifying force transmission through the cell body to adhesion sites. We here present a novel approach to quantify intracellular force transmission by combining microneedle shearing at the apical cell surface with traction force microscopy at the basal cell surface. The change of traction forces exerted by fibroblasts to underlying polyacrylamide substrates as a response to a known shear force exerted with a calibrated microneedle reveals that cells redistribute forces dynamically under external shearing and during sequential rupture of their adhesion sites. Our quantitative results demonstrate a transition from dipolar to monopolar traction patterns, an inhomogeneous distribution of the external shear force to the adhesion sites as well as dynamical changes in force loading prior to and after the rupture of single adhesion sites. Our strategy of combining traction force microscopy with external force application opens new perspectives for future studies of force transmission and mechanotransduction in cells.


Asunto(s)
Mecanotransducción Celular , Tracción , Animales , Adhesión Celular , Fibroblastos , Mamíferos , Fenómenos Mecánicos , Mecanotransducción Celular/fisiología , Microscopía de Fuerza Atómica/métodos
8.
Proc Natl Acad Sci U S A ; 116(31): 15550-15559, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31235578

RESUMEN

The ability of glioblastoma to disperse through the brain contributes to its lethality, and blocking this behavior has been an appealing therapeutic approach. Although a number of proinvasive signaling pathways are active in glioblastoma, many are redundant, so targeting one can be overcome by activating another. However, these pathways converge on nonredundant components of the cytoskeleton, and we have shown that inhibiting one of these-the myosin II family of cytoskeletal motors-blocks glioblastoma invasion even with simultaneous activation of multiple upstream promigratory pathways. Myosin IIA and IIB are the most prevalent isoforms of myosin II in glioblastoma, and we now show that codeleting these myosins markedly impairs tumorigenesis and significantly prolongs survival in a rodent model of this disease. However, while targeting just myosin IIA also impairs tumor invasion, it surprisingly increases tumor proliferation in a manner that depends on environmental mechanics. On soft surfaces myosin IIA deletion enhances ERK1/2 activity, while on stiff surfaces it enhances the activity of NFκB, not only in glioblastoma but in triple-negative breast carcinoma and normal keratinocytes as well. We conclude myosin IIA suppresses tumorigenesis in at least two ways that are modulated by the mechanics of the tumor and its stroma. Our results also suggest that inhibiting tumor invasion can enhance tumor proliferation and that effective therapy requires targeting cellular components that drive both proliferation and invasion simultaneously.


Asunto(s)
Carcinogénesis/metabolismo , Citoesqueleto/metabolismo , Glioblastoma/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/patología , Glioblastoma/genética , Glioblastoma/patología , Ratones , Proteínas de Neoplasias/genética , Miosina Tipo IIA no Muscular/genética
9.
Nat Mater ; 19(4): 464-473, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31844279

RESUMEN

Mutations in the LMNA gene, which encodes the nuclear envelope (NE) proteins lamins A/C, cause Emery-Dreifuss muscular dystrophy, congenital muscular dystrophy and other diseases collectively known as laminopathies. The mechanisms responsible for these diseases remain incompletely understood. Using three mouse models of muscle laminopathies and muscle biopsies from individuals with LMNA-related muscular dystrophy, we found that Lmna mutations reduced nuclear stability and caused transient rupture of the NE in skeletal muscle cells, resulting in DNA damage, DNA damage response activation and reduced cell viability. NE and DNA damage resulted from nuclear migration during skeletal muscle maturation and correlated with disease severity in the mouse models. Reduction of cytoskeletal forces on the myonuclei prevented NE damage and rescued myofibre function and viability in Lmna mutant myofibres, indicating that myofibre dysfunction is the result of mechanically induced NE damage. Taken together, these findings implicate mechanically induced DNA damage as a pathogenic contributor to LMNA skeletal muscle diseases.


Asunto(s)
Daño del ADN , Lamina Tipo A , Distrofia Muscular Animal , Mutación , Miofibrillas , Membrana Nuclear , Animales , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Ratones , Ratones Noqueados , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Miofibrillas/metabolismo , Miofibrillas/patología , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patología
10.
Nat Rev Mol Cell Biol ; 10(1): 63-73, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19197333

RESUMEN

Cells sense their physical surroundings through mechanotransduction - that is, by translating mechanical forces and deformations into biochemical signals such as changes in intracellular calcium concentration or by activating diverse signalling pathways. In turn, these signals can adjust cellular and extracellular structure. This mechanosensitive feedback modulates cellular functions as diverse as migration, proliferation, differentiation and apoptosis, and is crucial for organ development and homeostasis. Consequently, defects in mechanotransduction - often caused by mutations or misregulation of proteins that disturb cellular or extracellular mechanics - are implicated in the development of various diseases, ranging from muscular dystrophies and cardiomyopathies to cancer progression and metastasis.


Asunto(s)
Mecanotransducción Celular/fisiología , Envejecimiento Prematuro/fisiopatología , Animales , Cardiomegalia/fisiopatología , Humanos , Distrofias Musculares/fisiopatología , Mutación , Neoplasias/fisiopatología
11.
Small ; 16(2): e1903857, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782912

RESUMEN

Cells respond to mechanical forces by deforming in accordance with viscoelastic solid behavior. Studies of microscale cell deformation observed by high speed video microscopy have elucidated a new cell behavior in which sufficiently rapid mechanical compression of cells can lead to transient cell volume loss and then recovery. This work has discovered that the resulting volume exchange between the cell interior and the surrounding fluid can be utilized for efficient, convective delivery of large macromolecules (2000 kDa) to the cell interior. However, many fundamental questions remain about this cell behavior, including the range of deformation time scales that result in cell volume loss and the physiological effects experienced by the cell. In this study, a relationship is established between cell viscoelastic properties and the inertial forces imposed on the cell that serves as a predictor of cell volume loss across human cell types. It is determined that cells maintain nuclear envelope integrity and demonstrate low protein loss after the volume exchange process. These results define a highly controlled cell volume exchange mechanism for intracellular delivery of large macromolecules that maintains cell viability and function for invaluable downstream research and clinical applications.


Asunto(s)
Tamaño de la Célula , Estrés Mecánico , Elasticidad , Viscosidad
12.
Annu Rev Biomed Eng ; 21: 443-468, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30916994

RESUMEN

Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus responds through a host of mechanisms, including partial unfolding, conformational changes, and phosphorylation of nuclear envelope proteins; modulation of nuclear import/export; and altered chromatin organization, resulting in transcriptional changes. It is unclear which of these events present direct mechanotransduction processes and which are downstream of other mechanotransduction pathways. We critically review and discuss the current evidence for nuclear mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and in disease, where an improved understanding of nuclear mechanotransduction is beginning to open new treatment avenues. Finally, we discuss innovative technological developments that will allow outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered.


Asunto(s)
Núcleo Celular/fisiología , Mecanotransducción Celular/fisiología , Modelos Biológicos , Animales , Ingeniería Biomédica , Núcleo Celular/ultraestructura , Cromatina/química , Cromatina/fisiología , Citoesqueleto/fisiología , Humanos , Laminas/genética , Laminas/fisiología , Proteínas Nucleares/química , Proteínas Nucleares/fisiología , Fosforilación , Conformación Proteica , Nicho de Células Madre/fisiología , Células Madre/fisiología , Ingeniería de Tejidos
13.
Nature ; 497(7450): 507-11, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23644458

RESUMEN

Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss muscular dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome. Most LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and altered interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes. Here we report in mice that lamin-A/C-deficient (Lmna(-/-)) and Lmna(N195K/N195K) mutant cells have impaired nuclear translocation and downstream signalling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function. Altered nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna(-/-) and Lmna(N195K/N195K) mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease aetiology for the cardiac phenotype in many laminopathies, whereby lamin A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization.


Asunto(s)
Actinas/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Factor de Respuesta Sérica/metabolismo , Transactivadores/metabolismo , Actinas/química , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Corazón/crecimiento & desarrollo , Lamina Tipo A/deficiencia , Lamina Tipo A/genética , Masculino , Ratones , Mutación , Miocardio/metabolismo , Transducción de Señal
14.
PLoS Genet ; 11(5): e1005231, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25996830

RESUMEN

Mutations in the human LMNA gene cause muscular dystrophy by mechanisms that are incompletely understood. The LMNA gene encodes A-type lamins, intermediate filaments that form a network underlying the inner nuclear membrane, providing structural support for the nucleus and organizing the genome. To better understand the pathogenesis caused by mutant lamins, we performed a structural and functional analysis on LMNA missense mutations identified in muscular dystrophy patients. These mutations perturb the tertiary structure of the conserved A-type lamin Ig-fold domain. To identify the effects of these structural perturbations on lamin function, we modeled these mutations in Drosophila Lamin C and expressed the mutant lamins in muscle. We found that the structural perturbations had minimal dominant effects on nuclear stiffness, suggesting that the muscle pathology was not accompanied by major structural disruption of the peripheral nuclear lamina. However, subtle alterations in the lamina network and subnuclear reorganization of lamins remain possible. Affected muscles had cytoplasmic aggregation of lamins and additional nuclear envelope proteins. Transcription profiling revealed upregulation of many Nrf2 target genes. Nrf2 is normally sequestered in the cytoplasm by Keap-1. Under oxidative stress Nrf2 dissociates from Keap-1, translocates into the nucleus, and activates gene expression. Unexpectedly, biochemical analyses revealed high levels of reducing agents, indicative of reductive stress. The accumulation of cytoplasmic lamin aggregates correlated with elevated levels of the autophagy adaptor p62/SQSTM1, which also binds Keap-1, abrogating Nrf2 cytoplasmic sequestration, allowing Nrf2 nuclear translocation and target gene activation. Elevated p62/SQSTM1 and nuclear enrichment of Nrf2 were identified in muscle biopsies from the corresponding muscular dystrophy patients, validating the disease relevance of our Drosophila model. Thus, novel connections were made between mutant lamins and the Nrf2 signaling pathway, suggesting new avenues of therapeutic intervention that include regulation of protein folding and metabolism, as well as maintenance of redox homoeostasis.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lamina Tipo A/genética , Distrofias Musculares/genética , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Núcleo Celular , Drosophila/genética , Drosophila/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Homeostasis , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína 1 Asociada A ECH Tipo Kelch , Lamina Tipo A/metabolismo , Músculo Esquelético/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/genética , Lámina Nuclear/genética , Lámina Nuclear/metabolismo , Estrés Oxidativo , Conformación Proteica , Pliegue de Proteína , Proteína Sequestosoma-1
15.
J Cell Sci ; 128(19): 3607-20, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26275827

RESUMEN

Lamins are intermediate filament proteins that form a fibrous meshwork, called the nuclear lamina, between the inner nuclear membrane and peripheral heterochromatin of metazoan cells. The assembly and incorporation of lamin A/C into the lamina, as well as their various functions, are still not well understood. Here, we employed designed ankyrin repeat proteins (DARPins) as new experimental tools for lamin research. We screened for DARPins that specifically bound to lamin A/C, and interfered with lamin assembly in vitro and with incorporation of lamin A/C into the native lamina in living cells. The selected DARPins inhibited lamin assembly and delocalized A-type lamins to the nucleoplasm without modifying lamin expression levels or the amino acid sequence. Using these lamin binders, we demonstrate the importance of proper integration of lamin A/C into the lamina for nuclear mechanical properties and nuclear envelope integrity. Finally, our study provides evidence for cell-type-specific differences in lamin functions.


Asunto(s)
Núcleo Celular/metabolismo , Laminas/metabolismo , Membrana Nuclear/metabolismo , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Humanos , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo
16.
Biophys J ; 111(7): 1541-1552, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27705776

RESUMEN

It is now evident that the cell nucleus undergoes dramatic shape changes during important cellular processes such as cell transmigration through extracellular matrix and endothelium. Recent experimental data suggest that during cell transmigration the deformability of the nucleus could be a limiting factor, and the morphological and structural alterations that the nucleus encounters can perturb genomic organization that in turn influences cellular behavior. Despite its importance, a biophysical model that connects the experimentally observed nuclear morphological changes to the underlying biophysical factors during transmigration through small constrictions is still lacking. Here, we developed a universal chemomechanical model that describes nuclear strains and shapes and predicts thresholds for the rupture of the nuclear envelope and for nuclear plastic deformation during transmigration through small constrictions. The model includes actin contraction and cytosolic back pressure that squeeze the nucleus through constrictions and overcome the mechanical resistance from deformation of the nucleus and the constrictions. The nucleus is treated as an elastic shell encompassing a poroelastic material representing the nuclear envelope and inner nucleoplasm, respectively. Tuning the chemomechanical parameters of different components such as cell contractility and nuclear and matrix stiffnesses, our model predicts the lower bounds of constriction size for successful transmigration. Furthermore, treating the chromatin as a plastic material, our model faithfully reproduced the experimentally observed irreversible nuclear deformations after transmigration in lamin-A/C-deficient cells, whereas the wild-type cells show much less plastic deformation. Along with making testable predictions, which are in accord with our experiments and existing literature, our work provides a realistic framework to assess the biophysical modulators of nuclear deformation during cell transmigration.


Asunto(s)
Forma del Núcleo Celular/fisiología , Núcleo Celular/química , Núcleo Celular/fisiología , Modelos Biológicos , Estrés Fisiológico/fisiología , Migración Transendotelial y Transepitelial/fisiología , Actinas/química , Actinas/metabolismo , Animales , Simulación por Computador , Citosol/química , Citosol/metabolismo , Elasticidad , Células Endoteliales/química , Células Endoteliales/fisiología , Dispositivos Laboratorio en un Chip , Microscopía de Fuerza Atómica , Permeabilidad , Presión , Estrés Mecánico , Agua/química , Agua/metabolismo
17.
Proc Biol Sci ; 283(1833)2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27358364

RESUMEN

Various insects require intracellular bacteria that are restricted to specialized cells (bacteriocytes) and are transmitted vertically via the female ovary, but the transmission mechanisms are obscure. We hypothesized that, in the whitefly Bemisia tabaci, where intact bacteriocytes (and not isolated bacteria) are transferred to oocytes, the transmission mechanism would be evident as cellular and molecular differences between the nymph (pre-adult) and adult bacteriocytes. We demonstrate dramatic remodelling of bacteriocytes at the developmental transition from nymph to adulthood. This transition involves the loss of cell-cell adhesion, high division rates to constant cell size and onset of cell mobility, enabling the bacteriocytes to crawl to the ovaries. These changes are accompanied by cytoskeleton reorganization and changes in gene expression: genes functioning in cell-cell adhesion display reduced expression and genes involved in cell division, cell motility and endocytosis/exocytosis have elevated expression in adult bacteriocytes, relative to nymph bacteriocytes. This study demonstrates, for the first time, how developmentally orchestrated remodelling of gene expression and correlated changes in cell behaviour underpin the capacity of bacteriocytes to mediate the vertical transmission and persistence of the symbiotic bacteria on which the insect host depends.


Asunto(s)
Bacterias , Hemípteros/microbiología , Oocitos/microbiología , Ovario/citología , Simbiosis , Animales , Adhesión Celular , Movimiento Celular , Citoesqueleto/fisiología , Femenino , Ovario/microbiología
18.
Am J Physiol Cell Physiol ; 309(11): C736-46, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26447202

RESUMEN

Metastasis contributes to over 90% of cancer-related deaths and is initiated when cancer cells detach from the primary tumor, invade the basement membrane, and enter the circulation as circulating tumor cells (CTCs). While metastasis is viewed as an inefficient process with most CTCs dying within the bloodstream, it is evident that some CTCs are capable of resisting hemodynamic shear forces to form secondary tumors in distant tissues. We hypothesized that nuclear lamins A and C (A/C) act as key structural components within CTCs necessary to resist destruction from elevated shear forces of the bloodstream. Herein, we show that, compared with nonmalignant epithelial cells, tumor cells are resistant to elevated fluid shear forces in vitro that mimic those within the bloodstream, as evidenced by significant decreases in cellular apoptosis and necrosis. Knockdown of lamin A/C significantly reduced tumor cell resistance to fluid shear stress, with significantly increased cell death compared with parental tumor cell and nontargeting controls. Interestingly, lamin A/C knockdown increased shear stress-induced tumor cell apoptosis, but did not significantly affect cellular necrosis. These data demonstrate that lamin A/C is an important structural component that enables tumor cell resistance to fluid shear stress-mediated death in the bloodstream, and may thus facilitate survival and hematogenous metastasis of CTCs.


Asunto(s)
Lamina Tipo A/deficiencia , Células Neoplásicas Circulantes/metabolismo , Estrés Mecánico , Apoptosis/fisiología , Línea Celular Tumoral , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Lamina Tipo A/genética , Leucocitos Mononucleares/metabolismo
19.
Hum Mol Genet ; 22(12): 2335-49, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23427149

RESUMEN

Lamins are intermediate filament proteins that assemble into a meshwork underneath the inner nuclear membrane, the nuclear lamina. Mutations in the LMNA gene, encoding lamins A and C, cause a variety of diseases collectively called laminopathies. The disease mechanism for these diverse conditions is not well understood. Since lamins A and C are fundamental determinants of nuclear structure and stability, we tested whether defects in nuclear mechanics could contribute to the disease development, especially in laminopathies affecting mechanically stressed tissue such as muscle. Using skin fibroblasts from laminopathy patients and lamin A/C-deficient mouse embryonic fibroblasts stably expressing a broad panel of laminopathic lamin A mutations, we found that several mutations associated with muscular dystrophy and dilated cardiomyopathy resulted in more deformable nuclei; in contrast, lamin mutants responsible for diseases without muscular phenotypes did not alter nuclear deformability. We confirmed our results in intact muscle tissue, demonstrating that nuclei of transgenic Drosophila melanogaster muscle expressing myopathic lamin mutations deformed more under applied strain than controls. In vivo and in vitro studies indicated that the loss of nuclear stiffness resulted from impaired assembly of mutant lamins into the nuclear lamina. Although only a subset of lamin mutations associated with muscular diseases caused increased nuclear deformability, almost all mutations tested had defects in force transmission between the nucleus and cytoskeleton. In conclusion, our results indicate that although defective nuclear stability may play a role in the development of muscle diseases, other factors, such as impaired nucleo-cytoskeletal coupling, likely contribute to the muscle phenotype.


Asunto(s)
Citoesqueleto/metabolismo , Lamina Tipo A/genética , Músculos/metabolismo , Enfermedades Musculares/genética , Mutación , Lámina Nuclear/metabolismo , Animales , Células Cultivadas , Citoesqueleto/química , Citoesqueleto/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/química , Lamina Tipo A/metabolismo , Ratones , Ratones Noqueados , Músculos/química , Enfermedades Musculares/metabolismo , Lámina Nuclear/química , Lámina Nuclear/genética , Estabilidad Proteica
20.
J Biol Chem ; 288(12): 8610-8618, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23355469

RESUMEN

Neutrophils are characterized by their distinct nuclear shape, which is thought to facilitate the transit of these cells through pore spaces less than one-fifth of their diameter. We used human promyelocytic leukemia (HL-60) cells as a model system to investigate the effect of nuclear shape in whole cell deformability. We probed neutrophil-differentiated HL-60 cells lacking expression of lamin B receptor, which fail to develop lobulated nuclei during granulopoiesis and present an in vitro model for Pelger-Huët anomaly; despite the circular morphology of their nuclei, the cells passed through micron-scale constrictions on similar timescales as scrambled controls. We then investigated the unique nuclear envelope composition of neutrophil-differentiated HL-60 cells, which may also impact their deformability; although lamin A is typically down-regulated during granulopoiesis, we genetically modified HL-60 cells to generate a subpopulation of cells with well defined levels of ectopic lamin A. The lamin A-overexpressing neutrophil-type cells showed similar functional characteristics as the mock controls, but they had an impaired ability to pass through micron-scale constrictions. Our results suggest that levels of lamin A have a marked effect on the ability of neutrophils to passage through micron-scale constrictions, whereas the unusual multilobed shape of the neutrophil nucleus is less essential.


Asunto(s)
Membrana Nuclear/metabolismo , Movimiento Celular , Núcleo Celular/metabolismo , Núcleo Celular/fisiología , Forma del Núcleo Celular , Expresión Génica , Células HL-60 , Humanos , Lamina Tipo A/biosíntesis , Lamina Tipo A/genética , Técnicas Analíticas Microfluídicas , Infiltración Neutrófila , Neutrófilos/metabolismo , Neutrófilos/fisiología , Membrana Nuclear/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Tretinoina/farmacología , Tretinoina/fisiología , Receptor de Lamina B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA