Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107238, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552736

RESUMEN

Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.


Asunto(s)
Alternaria , Luz Azul , Flavina-Adenina Dinucleótido , Proteínas Fúngicas , Fotorreceptores Microbianos , Alternaria/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Flavina-Adenina Dinucleótido/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fitocromo/metabolismo , Fitocromo/química , Fitocromo/genética , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , Temperatura
2.
EMBO J ; 40(17): e108083, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34254350

RESUMEN

Mitochondria are essential organelles because of their function in energy conservation. Here, we show an involvement of mitochondria in phytochrome-dependent light sensing in fungi. Phytochrome photoreceptors are found in plants, bacteria, and fungi and contain a linear, heme-derived tetrapyrrole as chromophore. Linearization of heme requires heme oxygenases (HOs) which reside inside chloroplasts in planta. Despite the poor degree of conservation of HOs, we identified two candidates in the fungus Alternaria alternata. Deletion of either one phenocopied phytochrome deletion. The two enzymes had a cooperative effect and physically interacted with phytochrome, suggesting metabolon formation. The metabolon was attached to the surface of mitochondria with a C-terminal anchor (CTA) sequence in HoxA. The CTA was necessary and sufficient for mitochondrial targeting. The affinity of phytochrome apoprotein to HoxA was 57,000-fold higher than the affinity of the holoprotein, suggesting a "kiss-and-go" mechanism for chromophore loading and a function of mitochondria as assembly platforms for functional phytochrome. Hence, two alternative approaches for chromophore biosynthesis and insertion into phytochrome evolved in plants and fungi.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Mitocondrias/metabolismo , Fitocromo/biosíntesis , Alternaria , Proteínas Fúngicas/genética , Hemo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Fitocromo/genética , Transporte de Proteínas
3.
Photochem Photobiol Sci ; 21(11): 1961-1974, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35906526

RESUMEN

Phytochromes are photoreceptor proteins with a bilin chromophore that undergo photoconversion between two spectrally different forms, Pr and Pfr. In plants, phytochromes play a central role in growth and differentiation during the entire life cycle. Phytochromes of plants and other groups of archaeplastida have a common evolutionary origin in prokaryotes, but the exact prokaryotic origin is as yet uncertain. Two possibilities are presently discussed: either, archaeplastidal phytochromes arose from the last eukaryotic common ancestor (LECA) or they arose from the cyanobacterial endosymbiont that gave rise to plastids. We first constructed standard phylogenetic trees based on N-terminal protein sequences of the chromophore module. As usual, variation of algorithms and parameters led to different trees. A relationship between cyanobacteria and archaeplastida was observed in 7 out of 36 trees. The lack of consistency between results obtained from variation of parameters of tree constructions reflects the uncertainty of archaeplastidal origin. To gain more information about a possible cyanobacterial and archaeplastidal relationship, we performed phylogenetic studies based on the amino acids that line the chromophore pockets. These amino acids are highly conserved and could provide more accurate information about long evolutionary time scales, but the reduction of traits could also lead to insignificant results. From 30 selected chromophore-binding amino acids, 6 were invariant. The subsequent studies were thus based on the information dependent on 24 or fewer amino acid positions. Again, multiple trees were constructed to get information about the robustness of relationships. The very low number of information-containing traits resulted in low bootstrap values and many indistinguishable leaves. However, the major groups fungi, bacteria, cyanobacteria, and plants remained united. Without exception, cyanobacteria and archaeplastida were always closely linked. In this respect, the results were more robust than those of the classic approach, based on long contiguous sequences. We therefore consider cyanobacteria as the most likely origin of archaeplastidal phytochromes.


Asunto(s)
Cianobacterias , Fitocromo , Fitocromo/química , Filogenia , Cianobacterias/química , Evolución Biológica , Plantas/metabolismo , Aminoácidos/metabolismo , Proteínas Bacterianas/química
4.
Photochem Photobiol Sci ; 20(6): 715-732, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34002345

RESUMEN

Deactivation processes of photoexcited (λex = 580 nm) phycocyanobilin (PCB) in methanol were investigated by means of UV/Vis and mid-IR femtosecond (fs) transient absorption (TA) as well as static fluorescence spectroscopy, supported by density-functional-theory calculations of three relevant ground state conformers, PCBA, PCBB and PCBC, their relative electronic state energies and normal mode vibrational analysis. UV/Vis fs-TA reveals time constants of 2.0, 18 and 67 ps, describing decay of PCBB*, of PCBA* and thermal re-equilibration of PCBA, PCBB and PCBC, respectively, in line with the model by Dietzek et al. (Chem Phys Lett 515:163, 2011) and predecessors. Significant substantiation and extension of this model is achieved first via mid-IR fs-TA, i.e. identification of molecular structures and their dynamics, with time constants of 2.6, 21 and 40 ps, respectively. Second, transient IR continuum absorption (CA) is observed in the region above 1755 cm-1 (CA1) and between 1550 and 1450 cm-1 (CA2), indicative for the IR absorption of highly polarizable protons in hydrogen bonding networks (X-H…Y). This allows to characterize chromophore protonation/deprotonation processes, associated with the electronic and structural dynamics, on a molecular level. The PCB photocycle is suggested to be closed via a long living (> 1 ns), PCBC-like (i.e. deprotonated), fluorescent species.

5.
Curr Microbiol ; 78(7): 2708-2719, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34023916

RESUMEN

The soil bacterium and plant pathogen Agrobacterium fabrum C58 has two phytochrome photoreceptors, Agp1 and Agp2. We found that plant infection and tumor induction by A. fabrum is down-regulated by light and that phytochrome knockout mutants of A. fabrum have diminished infection rates. The regulation pattern of infection matches with that of bacterial conjugation reported earlier, suggesting similar regulatory mechanisms. In the regulation of conjugation and plant infection, phytochromes are active in darkness. This is a major difference to plant phytochromes, which are typically active after irradiation. We also found that propagation and motility were affected in agp1- and agp2- knockout mutants, although propagation was not always affected by light. The regulatory patterns can partially but not completely be explained by modulated histidine kinase activities of Agp1 and Agp2. In a mass spectrometry-based proteomic study, 24 proteins were different between light and dark grown A. fabrum, whereas 382 proteins differed between wild type and phytochrome knockout mutants, pointing again to light independent roles of Agp1 and Agp2.


Asunto(s)
Fitocromo , Agrobacterium/genética , Proteínas Bacterianas/genética , Luz , Fitocromo/genética , Proteómica
6.
Mol Microbiol ; 112(6): 1814-1830, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31556180

RESUMEN

The adaptation of microorganisms to different temperatures is an advantage in habitats with steadily changing conditions and raises the question about temperature sensing. Here we show that in the filamentous fungus Aspergillus nidulans, the hybrid histidine kinase TcsB and phytochrome are involved in temperature-induced gene transcription. Temperature-activated phytochrome fed the signal into the HOG MAP kinase pathway. There is evidence that the photoreceptor phytochrome fulfills a temperature sensory role in plants and bacteria. The effects in plants are based on dark reversion from the active form of phytochrome, Pfr, to the inactive form, Pr. Elevated temperature leads to higher dark reversion rates, and hence, temperature sensing depends on light. In A. nidulans and in Alternaria alternata, the temperature response was light-independent. In order to understand the primary temperature response of phytochrome, we performed spectral analyses of recombinant FphA from both fungi. Spectral properties after heat stress resembled the spectrum of free biliverdin, suggesting conformational changes and a softening of the binding pocket of phytochrome, possibly mimicking photoactivation. We propose a novel function for fungal phytochrome as temperature sensor.


Asunto(s)
Histidina Quinasa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/metabolismo , Sensación Térmica/fisiología , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Luz , Proteínas de la Membrana/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fitocromo/metabolismo , Proteínas Quinasas/fisiología , Temperatura , Sensación Térmica/genética
7.
Extremophiles ; 24(6): 887-896, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32960344

RESUMEN

Photolyases are proteins that enzymatically repair the UV-induced DNA damage by a protein-DNA electron transfer mechanism. They repair either cyclobutane pyrimidine dimers or pyrimidine (6-4) pyrimidone photoproducts or just (6-4)-photoproducts. In this work, we report the production and partial characterization of a recombinant (6-4)-photolyase (SphPhrB97) from a bacterial psychrotolerant Antarctic isolate identified as Sphingomonas sp. strain UV9. The spectrum analysis and the in silico study of SphPhrB97 suggest that this enzyme has similar features as compared to the (6-4)-photolyase from Agrobacterium tumefaciens (4DJA; PhrB), including the presence of three cofactors: FAD, DMRL (6,7-dimethyl-8-(1'-D-ribityl) lumazine), and an Fe-S cluster. The homology model of SphPhrB97 predicts that the DNA-binding pocket (area and volume) is larger as compared to (6-4)-photolyases from mesophilic microbes. Based on sequence comparison and on the homology model, we propose an electron transfer pathway towards the FAD cofactor involving the residues Trp342, Trp390, Tyr40, Tyr391, and Tyr399. The phylogenetic tree performed using curated and well-characterized prokaryotic (6-4)-photolyases suggests that SphPhrB97 may have an ancient evolutionary origin. The results suggest that SphPhrB97 is a cold-adapted enzyme, ready to cope with the UV irradiation stress found in a hostile environment, such as Antarctica.


Asunto(s)
Proteínas Bacterianas/química , Desoxirribodipirimidina Fotoliasa , Sphingomonas/enzimología , Regiones Antárticas , Proteínas Bacterianas/genética , Reparación del ADN , Desoxirribodipirimidina Fotoliasa/química , Desoxirribodipirimidina Fotoliasa/genética , Filogenia , Dímeros de Pirimidina , Proteínas Recombinantes , Sphingomonas/genética , Rayos Ultravioleta
8.
Appl Microbiol Biotechnol ; 104(16): 7037-7050, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32572574

RESUMEN

Photolyases are flavoproteins that repair ultraviolet-induced DNA lesions (cyclobutane pyrimidine dimer or CPD, and pyrimidine (6-4) pyrimidone photoproducts or (6-4)-PPs), using blue light as an energy source. These enzymes are substrate specific, meaning that a specific photolyase repairs either a CPD or a (6-4)-PP. In this work, we produced a class II CPD-photolyase (called as PhrSph98) from the Antarctic bacterium Sphingomonas sp. UV9 by recombinant DNA technology and we purified the enzyme using immobilized metal affinity chromatography. By using an immunochemistry assay, with monoclonal antibodies against CPD and (6-4)-PP, we found that PhrSph98 repairs both DNA lesions. The result was confirmed by immunocytochemistry using immortalized non-tumorigenic human keratinocytes. Results from structure prediction, pocket computation, and molecular docking analyses showed that PhrSph98 has the two expected protein domains (light-harvesting antenna and a catalytic domain), a larger catalytic site as compared with photolyases produced by mesophilic organisms, and that both substrates fit the catalytic domain. The results obtained from predicted homology modeling suggest that the electron transfer pathway may occur following this pathway: Y389-W369-W390-F376-W381/FAD. The evolutionary reconstruction of PhrSph98 suggests that this is a missing link that reflects the transition of (6-4)-PP repair into the CPD repair ability for the class II CPD-photolyases. To the best of our knowledge, this is the first report of a naturally occurring bifunctional, CPD and (6-4)-PP, repairing enzyme. KEY POINTS: • We report the first described bifunctional CPD/(6-4)-photoproducts repairing enzyme. The bifunctional enzyme reaches the nuclei of keratinocyte and repairs the UV-induced DNA damage. The enzyme should be a missing link from an evolutionary point of view. The enzyme may have potential uses in the pharmaceutical and cosmetic industries.


Asunto(s)
Reparación del ADN , Desoxirribodipirimidina Fotoliasa/química , Desoxirribodipirimidina Fotoliasa/metabolismo , Sphingomonas/enzimología , Regiones Antárticas , Dominio Catalítico , ADN Recombinante , Desoxirribodipirimidina Fotoliasa/genética , Transporte de Electrón , Enzimas Inmovilizadas/metabolismo , Escherichia coli/genética , Células HaCaT , Humanos , Queratinocitos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Sphingomonas/genética
9.
Extremophiles ; 23(1): 49-57, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30267301

RESUMEN

Photolyases are DNA-repairing flavoproteins that are represented in most phylogenetic taxa with the exception of placental mammals. These enzymes reduce the ultraviolet-induced DNA damage; thus, they have features that make them very attractive for dermatological or other medical uses, such as the prevention of human skin cancer and actinic keratosis. In this work, we identified a 50.8 kDa photolyase from the UVC-resistant Antarctic bacterium Hymenobacter sp. UV11. The enzyme was produced by recombinant DNA technology, purified using immobilized metal affinity chromatography and its activity was analyzed using different approaches: detection of cyclobutane pyrimidine dimers (CPDs) by immunochemistry, high-performance liquid chromatography and comet assays using Chinese Hamster Ovary (CHO) and immortalized nontumorigenic human epidermal (HaCat) cells. The information supports that the recombinant protein has the ability to repair the formation of CPDs, on both double- and single-stranded DNA. This CPD-photolyase was fully active on CHO and HaCat cell lines, suggesting that this enzyme could be used for medical or cosmetic purposes. Results also suggest that the UV11 CPD-photolyase uses MTHF as chromophore in the antenna domain. The potential use of this recombinant enzyme in the development of new inventions with pharmaceutical and cosmetic applications is discussed during this work.


Asunto(s)
Proteínas Bacterianas/genética , Desoxirribodipirimidina Fotoliasa/genética , Flavobacteriaceae/genética , Microbiología Industrial/métodos , Animales , Proteínas Bacterianas/metabolismo , Células CHO , Costos y Análisis de Costo , Cricetinae , Cricetulus , Desoxirribodipirimidina Fotoliasa/metabolismo , Flavobacteriaceae/enzimología , Humanos , Microbiología Industrial/economía , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Phys Chem Chem Phys ; 21(31): 17072-17081, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31313765

RESUMEN

The repair of sun-induced DNA lesions by photolyases is driven by a photoinduced electron transfer from a fully reduced FAD to the damaged DNA. A chain of several aromatic residues connecting FAD to solvent ensures the prior photoreduction of the FAD cofactor. In PhrA, a class III CPD photolyase, two branching tryptophan charge transfer pathways have been characterized. According to previous experiments, both pathways play a role in the FAD photoreduction. To provide a molecular insight to the charge transfer abilities of both pathways, we perform multiscales simulations where the protein motion and the positive charge are simultaneously propagated. Our computational approach reveals that one pathway drives a very fast charge transfer whereas the other pathway provides a very good thermodynamic stabilization of the positive charge. During the simulations, the positive charge firstly moves on the fast triad, while a reorganization of the close FAD˙- environment occurs. Then, backward transfers can lead to the propagation of the positive charge on the second pathway. After one nanosecond, we observe a nearly equal probability to find the charge at ending tryptophan of either pathway; eventually the charge distribution will likely evolve towards a charge stabilization on the last tryptophan of the slowest pathway. Our results highlight the role the protein environment, which manages the association of a kinetic and a thermodynamic pathways to trigger a fast and efficient FAD photoreduction.


Asunto(s)
Reparación del ADN , Desoxirribodipirimidina Fotoliasa/química , Modelos Moleculares , Transporte de Electrón , Flavina-Adenina Dinucleótido/química , Cinética , Oxidación-Reducción , Procesos Fotoquímicos , Conformación Proteica , Termodinámica , Triptófano/química
11.
J Biol Chem ; 292(18): 7598-7606, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28289094

RESUMEN

Bacterial phytochromes are dimeric light-regulated histidine kinases that convert red light into signaling events. Light absorption by the N-terminal photosensory core module (PCM) causes the proteins to switch between two spectrally distinct forms, Pr and Pfr, thus resulting in a conformational change that modulates the C-terminal histidine kinase region. To provide further insights into structural details of photoactivation, we investigated the full-length Agp1 bacteriophytochrome from the soil bacterium Agrobacterium fabrum using a combined spectroscopic and modeling approach. We generated seven mutants suitable for spin labeling to enable application of pulsed EPR techniques. The distances between attached spin labels were measured using pulsed electron-electron double resonance spectroscopy to probe the arrangement of the subunits within the dimer. We found very good agreement of experimental and calculated distances for the histidine-kinase region when both subunits are in a parallel orientation. However, experimental distance distributions surprisingly showed only limited agreement with either parallel- or antiparallel-arranged dimer structures when spin labels were placed into the PCM region. This observation indicates that the arrangements of the PCM subunits in the full-length protein dimer in solution differ significantly from that in the PCM crystals. The pulsed electron-electron double resonance data presented here revealed either no or only minor changes of distance distributions upon Pr-to-Pfr photoconversion.


Asunto(s)
Agrobacterium/química , Proteínas Bacterianas/química , Fitocromo/química , Multimerización de Proteína , Agrobacterium/genética , Agrobacterium/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Mutación , Fitocromo/genética , Fitocromo/metabolismo , Estructura Cuaternaria de Proteína , Marcadores de Spin
12.
J Biol Chem ; 291(39): 20674-91, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27466363

RESUMEN

Agp1 is a canonical biliverdin-binding bacteriophytochrome from the soil bacterium Agrobacterium fabrum that acts as a light-regulated histidine kinase. Crystal structures of the photosensory core modules (PCMs) of homologous phytochromes have provided a consistent picture of the structural changes that these proteins undergo during photoconversion between the parent red light-absorbing state (Pr) and the far-red light-absorbing state (Pfr). These changes include secondary structure rearrangements in the so-called tongue of the phytochrome-specific (PHY) domain and structural rearrangements within the long α-helix that connects the cGMP-specific phosphodiesterase, adenylyl cyclase, and FhlA (GAF) and the PHY domains. We present the crystal structures of the PCM of Agp1 at 2.70 Å resolution and of a surface-engineered mutant of this PCM at 1.85 Å resolution in the dark-adapted Pr states. Whereas in the mutant structure the dimer subunits are in anti-parallel orientation, the wild-type structure contains parallel subunits. The relative orientations between the PAS-GAF bidomain and the PHY domain are different in the two structures, due to movement involving two hinge regions in the GAF-PHY connecting α-helix and the tongue, indicating pronounced structural flexibility that may give rise to a dynamic Pr state. The resolution of the mutant structure enabled us to detect a sterically strained conformation of the chromophore at ring A that we attribute to the tight interaction with Pro-461 of the conserved PRXSF motif in the tongue. Based on this observation and on data from mutants where residues in the tongue region were replaced by alanine, we discuss the crucial roles of those residues in Pr-to-Pfr photoconversion.


Asunto(s)
Agrobacterium/química , Proteínas Bacterianas/química , Fitocromo/química , Multimerización de Proteína , Agrobacterium/genética , Agrobacterium/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Fitocromo/genética , Fitocromo/metabolismo , Dominios Proteicos , Estructura Cuaternaria de Proteína
13.
J Biol Chem ; 290(18): 11504-14, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25784552

RESUMEN

Photolyases are proteins with an FAD chromophore that repair UV-induced pyrimidine dimers on the DNA in a light-dependent manner. The cyclobutane pyrimidine dimer class III photolyases are structurally unknown but closely related to plant cryptochromes, which serve as blue-light photoreceptors. Here we present the crystal structure of a class III photolyase termed photolyase-related protein A (PhrA) of Agrobacterium tumefaciens at 1.67-Å resolution. PhrA contains 5,10-methenyltetrahydrofolate (MTHF) as an antenna chromophore with a unique binding site and mode. Two Trp residues play pivotal roles for stabilizing MTHF by a double π-stacking sandwich. Plant cryptochrome I forms a pocket at the same site that could accommodate MTHF or a similar molecule. The PhrA structure and mutant studies showed that electrons flow during FAD photoreduction proceeds via two Trp triads. The structural studies on PhrA give a clearer picture on the evolutionary transition from photolyase to photoreceptor.


Asunto(s)
Desoxirribodipirimidina Fotoliasa/metabolismo , Dímeros de Pirimidina/metabolismo , Tetrahidrofolatos/metabolismo , Rayos Ultravioleta , Agrobacterium tumefaciens/enzimología , Sitios de Unión , Cristalografía por Rayos X , Citocromos/metabolismo , Daño del ADN , Desoxirribodipirimidina Fotoliasa/química , Estabilidad de Enzimas , Evolución Molecular , Flavina-Adenina Dinucleótido/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Oxidación-Reducción/efectos de la radiación , Estructura Terciaria de Proteína , Dímeros de Pirimidina/química
14.
Chemphyschem ; 17(9): 1288-97, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27075723

RESUMEN

Bathy phytochrome Agp2 from Agrobacterium fabrum exhibits an unusually low pKa =7.6 in the Pr state in contrast to a pKa >11 in the Pfr state, indicating a pH-dependent charge distribution and H-bond network in the Pr chromophore binding pocket around neutral pH. Here, we report on ultrafast UV/Vis absorption spectroscopy of the primary Pr photoisomerization of Agp2 at pH 6 and pH 9 and upon H2 O/D2 O buffer exchange. The triexponential Pr kinetics slows down at increased pH and pronounced pH-dependent kinetic isotope effects are observed. The results on the Pr photoreaction suggest: 1) component-wise hindered dynamics on the chromophore excited-state potential energy surface at high pH and 2) proton translocation processes either via single-proton transfer or via significant reorganization of H-bond networks. Both effects reflect the interplay between the pH-dependent charge distribution in the Pr chromophore binding pocket on the one hand and chromophore excitation and its Z→E isomerization on the other hand.


Asunto(s)
Agrobacterium/química , Fitocromo/química , Análisis Espectral/métodos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Procesos Fotoquímicos
15.
Proc Natl Acad Sci U S A ; 110(18): 7217-22, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589886

RESUMEN

The (6-4) photolyases use blue light to reverse UV-induced (6-4) photoproducts in DNA. This (6-4) photorepair was thought to be restricted to eukaryotes. Here we report a prokaryotic (6-4) photolyase, PhrB from Agrobacterium tumefaciens, and propose that (6-4) photolyases are broadly distributed in prokaryotes. The crystal structure of photolyase related protein B (PhrB) at 1.45 Å resolution suggests a DNA binding mode different from that of the eukaryotic counterparts. A His-His-X-X-Arg motif is located within the proposed DNA lesion contact site of PhrB. This motif is structurally conserved in eukaryotic (6-4) photolyases for which the second His is essential for the (6-4) photolyase function. The PhrB structure contains 6,7-dimethyl-8-ribityllumazine as an antenna chromophore and a [4Fe-4S] cluster bound to the catalytic domain. A significant part of the Fe-S fold strikingly resembles that of the large subunit of eukaryotic and archaeal primases, suggesting that the PhrB-like photolyases branched at the base of the evolution of the cryptochrome/photolyase family. Our study presents a unique prokaryotic (6-4) photolyase and proposes that the prokaryotic (6-4) photolyases are the ancestors of the cryptochrome/photolyase family.


Asunto(s)
Agrobacterium tumefaciens/enzimología , Desoxirribodipirimidina Fotoliasa/química , Proteínas Hierro-Azufre/química , Pteridinas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , ADN Primasa/química , Desoxirribodipirimidina Fotoliasa/metabolismo , Evolución Molecular , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Pteridinas/química , Saccharomyces cerevisiae/enzimología , Homología Estructural de Proteína
16.
Plant Cell ; 24(5): 1936-51, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22582099

RESUMEN

Phytochromes are photoreceptors with a bilin chromophore in which light triggers the conversion between the red light-absorbing form, Pr, and the far-red-light-absorbing form, Pfr. Here we performed in vitro and in vivo studies using locked phycocyanobilin derivatives, termed 15 Z anti phycocyanobilin (15ZaPCB) and 15 E anti PCB (15EaPCB). Recombinant bacterial and plant phytochromes incorporated either chromophore in a noncovalent or covalent manner. All adducts were photoinactive. The absorption spectra of the 15ZaPCB and 15EaPCB adducts were comparable with those of the Pr and Pfr form, respectively. Feeding of 15EaPCB, but not 15ZaPCB, to protonemal filaments of the moss Ceratodon purpureus resulted in increased chlorophyll accumulation, modulation of gravitropism, and induction of side branches in darkness. The effect of locked chromophores on phytochrome responses, such as induction of seed germination, inhibition of hypocotyl elongation, induction of cotyledon opening, randomization of gravitropism, and gene regulation, were investigated in wild-type Arabidopsis thaliana and the phytochrome-chromophore-deficient long hypocotyl mutant hy1. All phytochrome responses were induced in darkness by 15EaPCB, not only in the mutant but also in the wild type. These studies show that the 15Ea stereochemistry of the chromophore results in the formation of active Pfr-like phytochrome in the cell. Locked chromophores might be used to investigate phytochrome responses in many other organisms without the need to isolate mutants. The induction of phytochrome responses in the hy1 mutant by 15EaPCB were however less efficient than by red light irradiation given to biliverdin-rescued seeds or seedlings.


Asunto(s)
Arabidopsis/metabolismo , Bryopsida/metabolismo , Ficobilinas/farmacología , Ficocianina/farmacología , Fitocromo/metabolismo , Arabidopsis/efectos de los fármacos , Bryopsida/efectos de los fármacos , Clorofila/metabolismo , Datos de Secuencia Molecular , Estructura Molecular
17.
J Biol Chem ; 288(44): 31738-51, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24036118

RESUMEN

Phytochromes are widely distributed photoreceptors with a bilin chromophore that undergo a typical reversible photoconversion between the two spectrally different forms, Pr and Pfr. The phytochrome Agp2 from Agrobacterium tumefaciens belongs to the group of bathy phytochromes that have a Pfr ground state as a result of the Pr to Pfr dark conversion. Agp2 has untypical spectral properties in the Pr form reminiscent of a deprotonated chromophore as confirmed by resonance Raman spectroscopy. UV/visible absorption spectroscopy showed that the pKa is >11 in the Pfr form and ∼7.6 in the Pr form. Unlike other phytochromes, photoconversion thus results in a pKa shift of more than 3 units. The Pr/Pfr ratio after saturating irradiation with monochromatic light is strongly pH-dependent. This is partially due to a back-reaction of the deprotonated Pr chromophore at pH 9 after photoexcitation as found by flash photolysis. The chromophore protonation and dark conversion were affected by domain swapping and site-directed mutagenesis. A replacement of the PAS or GAF domain by the respective domain of the prototypical phytochrome Agp1 resulted in a protonated Pr chromophore; the GAF domain replacement afforded an inversion of the dark conversion. A reversion was also obtained with the triple mutant N12S/Q190L/H248Q, whereas each single point mutant is characterized by decelerated Pr to Pfr dark conversion.


Asunto(s)
Agrobacterium tumefaciens/química , Proteínas Bacterianas/química , Fitocromo/química , Agrobacterium tumefaciens/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Mutagénesis Sitio-Dirigida , Mutación Missense , Fitocromo/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes , Espectrofotometría Ultravioleta , Espectrometría Raman
18.
J Biol Chem ; 288(23): 16800-16814, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23603902

RESUMEN

Phytochromes act as photoswitches between the red- and far-red absorbing parent states of phytochromes (Pr and Pfr). Plant phytochromes display an additional thermal conversion route from the physiologically active Pfr to Pr. The same reaction pattern is found in prototypical biliverdin-binding bacteriophytochromes in contrast to the reverse thermal transformation in bathy bacteriophytochromes. However, the molecular origin of the different thermal stabilities of the Pfr states in prototypical and bathy bacteriophytochromes is not known. We analyzed the structures of the chromophore binding pockets in the Pfr states of various bathy and prototypical biliverdin-binding phytochromes using a combined spectroscopic-theoretical approach. For the Pfr state of the bathy phytochrome from Pseudomonas aeruginosa, the very good agreement between calculated and experimental Raman spectra of the biliverdin cofactor is in line with important conclusions of previous crystallographic analyses, particularly the ZZEssa configuration of the chromophore and its mode of covalent attachment to the protein. The highly homogeneous chromophore conformation seems to be a unique property of the Pfr states of bathy phytochromes. This is in sharp contrast to the Pfr states of prototypical phytochromes that display conformational equilibria between two sub-states exhibiting small structural differences at the terminal methine bridges A-B and C-D. These differences may mainly root in the interactions of the cofactor with the highly conserved Asp-194 that occur via its carboxylate function in bathy phytochromes. The weaker interactions via the carbonyl function in prototypical phytochromes may lead to a higher structural flexibility of the chromophore pocket opening a reaction channel for the thermal (ZZE → ZZZ) Pfr to Pr back-conversion.


Asunto(s)
Proteínas Bacterianas/química , Fitocromo/química , Pseudomonas aeruginosa/química , Sitios de Unión
19.
FEBS Lett ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946046

RESUMEN

Cyanobacteria move by gliding motility on surfaces toward the light or away from it. It is as yet unclear how the light direction is sensed on the molecular level. Diverse photoreceptor knockout mutants have a stronger response toward the light than the wild type. Either the light direction is sensed by multiple photoreceptors or by photosystems. In a study on photophobotaxis of the filamentous cyanobacterium Phormidium lacuna, broad spectral sensitivity, inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and a highly sensitive response speaks for photosystems as light direction sensors. Here, it is discussed whether the photosystem theory could hold for phototaxis of other cyanobacteria.

20.
Photochem Photobiol ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38269403

RESUMEN

Cyanobacterium Phormidium lacuna filaments move from dark to illuminated areas by twitching motility. Time-lapse recordings demonstrated that this photophobotaxis response was based on random movements with movement reversion at the light-dark border. The filaments in the illuminated area form a biofilm attached to the surface. The wild-type and the pixJ and cphA mutants were investigated for photophobotaxis at diverse wavelengths and intensities. CphA is a cyanobacterial phytochrome; PixJ is a biliprotein with a methyl-accepting chemotaxis domain and is regarded as a phototaxis photoreceptor in other species. The cphA mutant exhibited reduced biofilm surface binding. The pixJ mutant was characterized as a negative photophobotaxis regulator and not as a light direction sensor. 3-(3,4-dichlorophenyl)1,1-dimethylurea (DCMU) blocks electron transfer in PS II. At concentrations of 100 and 1000 µM DCMU, photophobotaxis was inhibited to a greater extent than motility, suggesting that PSII has a role in photophobotaxis. We argue that the intracellular concentrations of regular photoreceptors, including CphA or PixJ, are too small for a filament to sense rapid light intensity changes in very weak light. Three arguments, specific inhibition by DCMU, broad spectral sensitivity, and sensitivity against weak light, support photosynthesis pigments for use as photophobotaxis sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA