Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 45(12): 9431-9449, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38132438

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer and the fifth cause of cancer-related deaths worldwide with a poor 5-year survival. SOX family genes play a role in the processes involved in cancer development such as epithelial-mesenchymal transition (EMT), the maintenance of cancer stem cells (CSCs) and the regulation of drug resistance. We analyzed the expression of SOX2-OT, SOX6, SOX8, SOX21, SOX30 and SRY genes in HNSCC patients using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, to assess their biological role and their potential utility as biomarkers. We demonstrated statistically significant differences in expression between normal and primary tumor tissues for SOX6, SOX8, SOX21 and SOX30 genes and pointed to SOX6 as the one that met the independent diagnostic markers criteria. SOX21 or SRY alone, or the panel of six SRY-related genes, could be used to estimate patient survival. SRY-related genes are positively correlated with immunological processes, as well as with keratinization and formation of the cornified envelope, and negatively correlated with DNA repair and response to stress. Moreover, except SRY, all analyzed genes were associated with a different tumor composition and immunological profiles. Based on validation results, the expression of SOX30 is higher in HPV(+) patients and is associated with patients' survival. SRY-related transcription factors have vast importance in HNSCC biology. SOX30 seems to be a potential biomarker of HPV infection and could be used as a prognostic marker, but further research is required to fully understand the role of SOX family genes in HNSCC.

2.
Rep Pract Oncol Radiother ; 28(5): 681-697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179293

RESUMEN

Head and neck squamous cell carcinoma is one of the most common and fatal cancers worldwide. Lack of appropriate preventive screening tests, late detection, and high heterogeneity of these tumors are the main reasons for the unsatisfactory effects of therapy and, consequently, unfavorable outcomes for patients. An opportunity to improve the quality of diagnostics and treatment of this group of cancers are microRNAs (miRNAs) - molecules with a great potential both as biomarkers and therapeutic targets. This review aims to present the characteristics of these short non-coding RNAs (ncRNAs) and summarize the current reports on their use in oncology focused on medical strategies tailored to patients' needs.

3.
Rep Pract Oncol Radiother ; 28(1): 114-134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122913

RESUMEN

Epigenetics is the changes in a cellular phenotype without changes in the genotype. This term is not limited only to the modification of chromatin and DNA but also relates to some RNAs, like non-coding RNAs (ncRNAs), both short and long RNAs (lncRNAs) acting as molecular modifiers. Mobile RNAs, as a free form or encapsulated in exosomes, can regulate neighboring cells or be placed in distant locations. It underlines the vast capacity of ncRNAs as epigenetic elements of transmission information and message of life. One of the amazing phenomena is long non-coding microRNA-host-genes (lnc-MIRHGs) whose processed transcripts function as lncRNAs and also as short RNAs named microRNAs (miRNAs). MIR31HG functions as a modulator of important biological and cellular processes including cell proliferation, apoptosis, cell cycle regulation, EMT process, metastasis, angiogenesis, hypoxia, senescence, and inflammation. However, in most cases, the role of MIR31HG is documented only by one study and there is a lack of exact description of molecular pathways implicated in these processes, and for some of them, such as response to irradiation, no studies have been done. In this review, MIR31HG, as an example of lnc-MIRHGs, was described in the context of its known function and its potential uses as a biomarker in oncology.

4.
Rep Pract Oncol Radiother ; 27(6): 1077-1093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36632289

RESUMEN

Most of the human genome is made out of noncoding RNAs (ncRNAs). These ncRNAs do not code for proteins but carry a vast number of important functions in human cells such as: modification and processing other RNAs (tRNAs, rRNAs, snRNAs, snoRNAs, miRNAs), help in the synthesis of ribosome proteins, initiation of DNA replication, regulation of transcription, processing of pre-messenger mRNA during its maturation and much more. The ncRNAs also have a significant impact on many events that occur during carcinogenesis in cancer cells, such as: regulation of cell survival, cellular signaling, apoptosis, proliferation or even influencing the metastasis process. The ncRNAs may be divided based on their length, into short and long, where 200 nucleotides is the "magic" border. However, a new division was proposed, suggesting the creation of the additional group called midsize noncoding RNAs, with the length ranging from 50-400 nucleotides. This new group may include: transfer RNA (tRNA), small nuclear RNAs (snRNAs) with 7SK and 7SL, small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs (scaRNAs) and YRNAs. In this review their structure, biogenesis, function and influence on carcinogenesis process will be evaluated. What is more, a question will be answered of whether this new division is a necessity that clears current knowledge or just creates an additional misunderstanding in the ncRNA world?

5.
Microb Ecol ; 82(4): 1030-1046, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33155101

RESUMEN

The human microbiome has been the focus of numerous research efforts to elucidate the pathogenesis of human diseases including cancer. Oral cancer mortality is high when compared with other cancers, as diagnosis often occurs during late stages. Its prevalence has increased in the USA over the past decade and accounts for over 40,000 new cancer patients each year. Additionally, oral cancer pathogenesis is not fully understood and is likely multifactorial. To unravel the relationships that are associated with the oral microbiome and their virulence factors, we used 16S rDNA and metagenomic sequencing to characterize the microbial composition and functional content in oral squamous cell carcinoma (OSCC) tumor tissue, non-tumor tissue, and saliva from 18 OSCC patients. Results indicate a higher number of bacteria belonging to the Fusobacteria, Bacteroidetes, and Firmicutes phyla associated with tumor tissue when compared with all other sample types. Additionally, saliva metaproteomics revealed a significant increase of Prevotella in five OSCC subjects, while Corynebacterium was mostly associated with ten healthy subjects. Lastly, we determined that there are adhesion and virulence factors associated with Streptococcus gordonii as well as from known oral pathogens belonging to the Fusobacterium genera found mostly in OSCC tissues. From these results, we propose that not only will the methods utilized in this study drastically improve OSCC diagnostics, but the organisms and specific virulence factors from the phyla detected in tumor tissue may be excellent biomarkers for characterizing disease progression.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , ARN Ribosómico 16S/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Factores de Virulencia/genética
6.
Int J Mol Sci ; 21(16)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784396

RESUMEN

YRNAs are a type of short, noncoding RNAs. A total of four different transcripts can be distinguished, which are YRNA1, YRNA3, YRNA4 and YRNA5. All YRNAs are relatively small, made up of about 100 nucleotides each. YRNAs are characterized by a stem-loop structure and each part of that structure carries a different function. YRNAs are transcribed in the nucleus by RNA polymerase III. Then, the YRNA molecule is bound to the polyuridine tail of the La protein responsible for both its nuclear retention and protection from degradation. They also bind to the Ro60 protein, making the molecule more stable. In turn, YRNA-derived small RNAs (YsRNAs) are a class of YRNAs produced in apoptotic cells as a result of YRNA degradation. This process is performed by caspase-3-dependent pathways that form two groups of YsRNAs, with lengths of either approximately 24 or 31 nucleotides. From all four YRNA transcripts, 75 well-described pseudogenes are generated as a result of the mutation. However, available data indicates the formation of up to 1000 pseudogenes. YRNAs and YRNA-derived small RNAs may play a role in carcinogenesis due to their altered expression in cancers and influence on cell proliferation and inflammation. Nevertheless, our knowledge is still limited, and more research is required. The main aim of this review is to describe the current state of knowledge about YRNAs, their function and contribution to carcinogenesis, as well as their potential role in cancer diagnostics. To confirm the promising potential of YRNAs and YRNA-derived fragments as biomarkers, their significant role in several tumor types was taken into consideration.


Asunto(s)
Investigación Biomédica , Neoplasias/diagnóstico , Neoplasias/genética , ARN Largo no Codificante/genética , Biomarcadores de Tumor/metabolismo , Humanos , Conformación de Ácido Nucleico , Seudogenes , ARN Largo no Codificante/metabolismo
7.
Rep Pract Oncol Radiother ; 25(5): 808-819, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32884453

RESUMEN

miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.

8.
Rep Pract Oncol Radiother ; 25(5): 783-792, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32904167

RESUMEN

Currently, the challenges of contemporary oncology are focused mainly on the development of personalized medicine and precise treatment, which could be achieved through the use of molecular biomarkers. One of the biological molecules with great potential are circulating free RNAs (cfRNAs) which are present in various types of body fluids, such as blood, serum, plasma, and saliva. Also, different types of cfRNA particles can be distinguished depending on their length and function: microRNA (miRNA), PIWI-interacting RNA (piRNA), tRNA-derived RNA fragments (tRFs), circular RNA (circRNA), long non-coding RNA (lncRNA), and messenger RNA (mRNA). Moreover, cfRNAs occur in various forms: as a free molecule alone, in membrane vesicles, such as exosomes, or in complexes with proteins and lipids. One of the modern approaches for monitoring patient's condition is a "liquid biopsy" that provides a non-invasive and easily available source of circulating RNAs. Both the presence of specific cfRNA types as well as their concentration are dependent on many factors including cancer type or even reaction to treatment. Despite the possibility of using circulating free RNAs as biomarkers, there is still a lack of validated diagnostic panels, defined protocols for sampling, storing as well as detection methods. In this work we examine different types of cfRNAs, evaluate them as possible biomarkers, and analyze methods of their detection. We believe that further research on cfRNA and defining diagnostic panels could lead to better and faster cancer identification and improve treatment monitoring.

9.
J Biomed Sci ; 26(1): 17, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30755200

RESUMEN

INTRODUCTION: Head and neck squamous carcinoma (HNSCC) is one of the most invasive types of cancer with high mortality. A previous study has indicated that low levels of let-7d and miR-205 in HNSCC patients are correlated with poor survival. Let-7d and miR-205 are tumor suppressors and regulators of epithelial-to-mesenchymal transition (EMT). However, it is unclear if let-7d and miR-205 together influence cancer cells. AIM: To determine if let-7d and miR-205 expression levels influence HNSCC patient outcome. METHODS: The TCGA expression data for let-7d, miR-205 and their targets as well as clinical data were downloaded from cBioPortal and starBase v2.0 for 307 patients. The expression levels of let-7d and miR-205 were verified according to clinicopathological parameters. The let-7d and miR-205 high- and low-expression groups as well as disease-free survival (DFS), overall survival (OS) and expression levels of genes related to EMT, cancer stem cells, metastasis, cell cycle, drug response and irradiation response were investigated. RESULTS: Let-7d and miR-205 were frequently upregulated in HNSCC compared to normal samples, and ROC analysis showed high discrimination ability for let-7d and miR-205 (area 0.7369 and 0.7739, respectively; p < 0.0001). Differences between expression levels of let-7d or miR-205 and grade, angiolymphatic invasion, perineural invasion and alcohol consumption were indicated. No differences were observed in N-stage, tumor localization, gender or patient age. Patients with lower let-7d levels and higher miR-205 levels had significantly better OS (p = 0.0325) than patients with higher let-7d levels and lower miR-205 levels. In the low let-7d level and high miR-205 level group, a lower percentage of more advanced cancers was observed. The analysis of genes related to EMT, cancer stem cells, metastasis, cell cycle, drug response and irradiation response revealed a distinct phenotype of analyzed groups. CONCLUSIONS: The present findings indicated that let-7d down-regulation and miR-205 overexpression create a unique cell phenotype with different behavior compared to cells with upregulated let-7d and down-regulated miR-205. Thus, let-7d and miR-205 are good candidates for new HNSCC biomarkers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , MicroARNs/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Femenino , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad
10.
Pol J Pathol ; 69(4): 356-365, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30786685

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) are one of the most challenging cancers to cure. In this study, we focused on eosinophil granule ontogeny transcript (EGOT), a transcriptional regulator of granule protein expression during eosinophil development that has been previously associated with cancers. Expression levels of EGOT and other selected genes as well as clinical pathology data from HNSCC samples, were obtained from The Cancer Genome Atlas (TCGA) and analysed using GraphPad Prism 5. Our results indicated that the expression of EGOT is slightly down-regulated in HNSCC, depending on tumour grade and location, and is only up-regulated in grade 4 tumours and those located in the pharynx. EGOT expression levels were found to vary according to age, N-stage, grade, lymph node dissection and human papillomavirus (HPV) infection. Patients with higher levels of EGOT expression have longer disease-free survival and overall survival outcomes. Further analysis revealed that EGOT targets are associated with cell division, proliferation, protein modification, drug response and cell motility. Taken together, our findings suggest that the EGOT is involved in the progression of HSNCC and seems particularly associated with virus-related forms of HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello/genética , ARN Largo no Codificante/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Humanos , Infecciones por Papillomavirus
11.
Rep Pract Oncol Radiother ; 23(3): 143-153, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760589

RESUMEN

Head and neck squamous cell carcinomas (HNSCC) are in a group of cancers that are the most resistant to treatment. The survival rate of HNSCC patients has been still very low since last 20 years. The existence of relationship between oncogenic and surrounding cells is probably the reason for a poor response to treatment. Fibroblasts are an important element of tumor stroma which increases tumor cells ability to proliferate. Another highly resistance, tumorigenic and metastatic cell population in tumor microenvironment are cancer initiating cells (CICs). The population of cancer initiating cells can be found regardless of differentiation status of cancer and they seem to be crucial for HNSCC development. In this review, we describe the current state of knowledge about HNSCC biological and physiological tumor microenvironment.

12.
Contemp Oncol (Pozn) ; 21(4): 259-266, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29416430

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cause of cancer mortality in the world. Some progress has been made in the therapy of HNSCC, however treatment remains unsatisfactory. Recent studies have shown that different types of long non-coding RNAs (lncRNAs) are dysregulated in HNSCC and correlate with tumor progression, lymph node metastasis, clinical stage and poor prognosis. lncRNAs are a class of functional RNA molecules that can not be translated into proteins but can modulate the activity of transcription factors or regulate changes in chromatin structure. The lncRNAs might have potential of biomarker in HNSCC diagnosis, prognosis, prediction and targeted treatment. In this review we describe the potential role of lncRNAs as new biomarkers and discuss their features including source of origin, extraction methods, stability, detection methods and data normalization and potential function as biomarkers in HNSCC.

13.
Rep Pract Oncol Radiother ; 22(5): 378-388, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28794691

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) are one of the worst prognosis cancers with high mortality of patients. The treatment strategy is primarily based on surgery and radiotherapy but chemotherapy is also used. Every year the knowledge concerning HNSCC biology is updated with new elements such as the recent discovered molecules - long non-coding RNAs. Long non-coding RNAs are involved in regulatory processes in the cells. It has been revealed that the expression levels of lncRNAs are disturbed in tumor cells what results in the acquisition of their specific phenotype. lncRNAs influence cell growth, cell cycle, cell phenotype, migration and invasion ability as well as apoptosis. Development of the lncRNA panel characteristic for HNSCC and validation of specific lncRNA functions are yet to be elucidated. In this work, we collected available data concerning lncRNAs in HNSCC and characterized their biological role. We believe that the tumor examination, in the context of lncRNA expression, may lead to understanding complex biology of the cancer and improve therapeutic methods in the future.

15.
Contemp Oncol (Pozn) ; 19(4): 276-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26557774

RESUMEN

BACKGROUND: The 3'UTR region plays a crucial role in regulating gene expression at posttranscriptional levels. Any changes in sequence in this region can cause numerous pathologies and can also lead to tumour development. The most common changes reported in in the CDKN2A gene are the 148Ala/Thr in exon 2 and 500C>G and 540C>T in the 3'UTR region. They are suspected of having a great impact on cancer progression. Since the role of these sequence variants in the Polish population in the development of melanoma has not been confirmed, the importance of 3'UTR polymorphisms in the regulation of gene expression was tested. MATERIAL AND METHODS: First, genetic analysis in a group of 285 melanoma patients was performed and the obtained results were correlated with the clinical course of melanoma. Then vectors carrying 3'UTR sequence variants were prepared and the level expression of the reported gene was measured. RESULTS: Within this study no correlation between the presence of 148Ala/Thr polymorphism and cancer in the family was observed. There was a correlation between the presence of this polymorphism and breast cancer and melanoma in the same patient. There was no correlation between 500C>G polymorphism and tumour localisation, age of diagnosis, and type of cancer in patients' family, but a correlation between the percentage of patients dying and the 500C>G variant was observed. CONCLUSION: The results of functional tests indicated that the presence of polymorphism in the 3'UTR region of the CDKN2A gene resulted in changes in the level of reporter gene expression.

16.
Contemp Oncol (Pozn) ; 18(5): 293-301, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25477749

RESUMEN

miRNAs belong to a class of small non-coding RNAs which can modulate gene expression. Disturbances in their expression and function may cause cancer formation, progression and cell response to various types of stress. The let-7 family is one of the most studied groups of miRNAs. The family contains 13 members with similar sequences and a wide spectrum of target genes. In this paper, we mostly focus on one member of the family - let-7d. This miRNA is dysregulated in many types of cancers. It can be over- or down-expressed, and it acts as a tumor suppressor or oncogene. It regulates various genes such as LIN28, C-MYC, K-RAS, HMGA2 and IMP-1. Moreover, let-7d has a significant impact on epithelial-to-mesenchymal transition (EMT) and formation of cancer initiating cells which are resistant to irradiation and chemical exposure and responsible for cancer metastasis. Let-7d can serve as a prognostic and predictive marker for personalization of the treatment. Let-7d is a small RNA with great power, but in different cell genetic backgrounds it acts in different ways, which makes this molecule still mysterious.

17.
Biomedicines ; 11(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36979661

RESUMEN

HPV infection is one of the most important risk factors for head and neck squamous cell carcinoma among younger patients. YRNAs are short non-coding RNAs involved in DNA replication. YRNAs have been found to be dysregulated in many cancers, including head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the role of YRNAs in HPV-positive HNSCC using publicly available gene expression datasets from HNSCC tissue, where expression patterns of YRNAs in HPV(+) and HPV(-) HNSCC samples significantly differed. Additionally, HNSCC cell lines were treated with YRNA1-overexpressing plasmid and RNA derived from these cell lines was used to perform a NGS analysis. Additionally, a deconvolution analysis was performed to determine YRNA1's impact on immune cells. YRNA expression levels varied according to cancer pathological and clinical stages, and correlated with more aggressive subtypes. YRNAs were mostly associated with more advanced cancer stages in the HPV(+) group, and YRNA3 and YRNA1 expression levels were found to be correlated with more advanced clinical stages despite HPV infection status, showing that they may function as potential biomarkers of more advanced stages of the disease. YRNA5 was associated with less-advanced cancer stages in the HPV(-) group. Overall survival and progression-free survival analyses showed opposite results between the HPV groups. The expression of YRNAs, especially YRNA1, correlated with a vast number of proteins and cellular processes associated with viral infections and immunologic responses to viruses. HNSCC-derived cell lines overexpressing YRNA1 were then used to determine the correlation of YRNA1 and the expression of genes associated with HPV infections. Taken together, our results highlight the potential of YRNAs as possible HNSCC biomarkers and new molecular targets.

18.
Sci Rep ; 13(1): 6991, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117538

RESUMEN

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) does not appear to be as serious a threat to public health as it was in 2020-2021, the increased transmissibility of multiple Omicron descendants may constitute a continuous challenge for health care systems, and reliable detection of new variants is still imperative. This study evaluates the performance of three SARS-CoV-2 diagnostic tests: Novel Coronavirus (2019-nCoV) Real Time Multiplex RT-PCR Kit (Liferiver); Vitassay qPCR SARS-CoV-2 (Vitaassay) and TaqPath COVID­19 CE-IVD RT-PCR Kit (Thermo Fisher Scientific). The analytical sensitivity of the assays as well as their specificity were determined with the use of synthetic nucleic acid standards and clinical samples. All assays appeared to be 100% specific for SARS-CoV-2 RNA in general and the Omicron variant in particular. The LOD determined during this validation was 10 viral RNA copies/reaction for Liferiver and TaqPath and 100 viral RNA copies for Vitassay. We cannot exclude that the LOD for the Vitassay might be lower and close to the manufacturer's declared value of ≥ 20 genome copies/reaction, as we obtained 90% positive results for 10 viral RNA copies/reaction. Mean Ct values at the concentration of 10 viral RNA copies/reaction for the Liferiver, Vitassay and TaqPath kits (35, 37 and 33, respectively) were significantly lower than the cutoff values declared by the manufacturers (≤ 41, ≤ 40 and ≤ 37, respectively). We suggest reporting outcomes based on LOD and cutoff Ct values determined during internal validation rather than those declared by the assays' producers.


Asunto(s)
COVID-19 , Mustelidae , Animales , SARS-CoV-2/genética , COVID-19/diagnóstico , ARN Viral/genética , Pruebas Diagnósticas de Rutina , Sensibilidad y Especificidad , Prueba de COVID-19
19.
Rep Pract Oncol Radiother ; 17(1): 13-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24376999

RESUMEN

BACKGROUND/AIM: The aim of our study was to check how MGMT methylation status together with known factors influenced the risk of colon cancer development. MATERIALS AND METHODS: We examined patients with colon polyps. Information concerning gender, age, lifestyle, diet, anthropometry and medical information, including cancer and family history of cancer, was analyzed. Polymorphism variety of MGMT gene was investigated in another study. Genetic analysis for MGMT methylation assessment was performed for polyp tissue samples from 143 patients. RESULTS: Positive methylation MGMT status was found in 55 patients. There was no correlation between gender and MGMT methylation status (p = 0.43). We did not find correlation between patients younger and older than 60 (p = 0.87). There was no correlation between smoking and MGMT methylation status (p = 0.36). We did not find correlation between BMI and MGMT methylation status (p = 0.86). We did not find correlation between MGMT methylation status and colon cancer in familial history (p = 0.45). CONCLUSION: Our study showed no correlations between methylation status of MGMT polymorphisms and clinical features like age, gender, polyp localization, smoking status, or obesity. It has been shown previously that MGMT methylation status may show nonspecific methylation in colon polyps. Gene methylation status in adenoma tissues has also been associated by other authors with the adenoma's size, histology, and degree of atypia. In our study, we evaluated the gene methylation status in colon polyps and found no association with adenoma characteristics. The present study showed no correlation for MGMT methylation in polyps in different regions of colon.

20.
J Pers Med ; 12(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36294743

RESUMEN

Long non-coding RNAs (lncRNAs) consist of at least 200 nucleotides. Although these molecules do not code proteins, they carry many regulatory functions in normal cells, as well as in cancer cells. For instance, many of these molecules have been previously correlated with tumorigenesis of different cancers and their reaction to various stress factors, such as radiotherapy, chemotherapy, or reactive oxygen species (ROS). The lncRNAs are associated not only with dysregulation in cancers after applied treatment but also with beneficial effects that may be achieved by modulating their expression, often significantly enhancing the patients' outcomes. A multitude of these molecules was previously considered as potential biomarkers of tumor development, progression, or cells' response to radio- or chemotherapy. Irradiation, which is often used in treating numerous cancer types, is not always sufficient due to cells gaining resistance in multiple ways. In this review, studies considering lncRNAs and their reaction to radiotherapy were examined. These molecules were divided regarding their role in specific processes strictly related to irradiation, and their influence on this type of treatment was explained, showing how vast an impact they have on IR-supported combat with the disease. This review aims to shed some light on potential future lncRNA-based biomarkers and therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA