Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Org Chem ; 89(7): 5109-5117, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38483841

RESUMEN

A novel strategy for the selective construction of a C(sp3)-P(III) or -P(V) bond from >P(O)-H compounds and aldehydes is disclosed. By using the H3PO3/I2 system, various secondary phosphine oxides could react with both aromatic and aliphatic aldehydes to afford valuable phosphines (isolated as sulfides) and phosphine oxides in good yields. This method features a wide substrate scope and simple reaction conditions and avoids the use of toxic halides and metals.

2.
J Colloid Interface Sci ; 665: 999-1006, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579390

RESUMEN

Piezo-photocatalytic water (deuterium oxide) decomposition is a promising strategy for realizing renewable energy, but the manipulation of the polar center remains a big challenge. This study uses a simple low-temperature hydrothermal process to successfully manufacture ZnmIn2Sm+3 (m = 1-3) (ZnIn2S4, Zn2In2S5 and Zn3In2S6). Incorporating both experimental and theoretical analyses, the structural contraction and local polarization of the Zn-S bond in Zn2In2S5 enhance the piezoelectric response and surface charge accumulation, which facilitate charge transfer and reduce the activation energy of water. Remarkably, Zn2In2S5 exhibits excellent piezoelectric photocatalytic total water splitting performance (H2/O2: 4284.72/1967.00 µmol g-1h-1), which is 1.77 times that of photocatalytic performance. Moreover, a significant enhancement in D2O splitting performance can be obtained for the optimized Zn2In2S5. Our work offers valuable insights into the disclosure of local polarization in catalysts for enhancing piezo-photocatalytic overall water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA