Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(4): 682-693, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38189574

RESUMEN

(Hetero)aromatic carboxylic acids and their derivatives attract attention due to their role in the synthesis of several biologically active molecules, active pharmaceutical ingredients, polymers, etc. Carbon dioxide (CO2) is a prime C1 source for the synthesis of aromatic carboxylic acids because of its nontoxicity, nonflammability, abundance and renewability. Owing to the thermodynamic and chemical inertness of CO2, traditional carboxylation to aromatic carboxylic acids with CO2 is always performed under harsh reaction conditions or using stoichiometric metallic reductants. Visible-light-driven carboxylation with CO2 provides an environmentally benign, mild, and high-efficiency route for the production of aromatic carboxylic acids. This review comprehensively introduces the visible-light-driven preparation of aromatic carboxylic acids through a visible-light-driven oxidative addition and reductive elimination mechanism, binding of aryl (radical) anions which are produced by photoinduced electron transfer (PET) to CO2, binding of carbon dioxide anion radicals (CO2˙-) which are formed by PET to aryl compounds, radical coupling between CO2˙- and aryl radicals, and other mechanisms. Finally, this review provides a summary and the future work direction. This article offers a theoretical guidance for efficient synthesis of aromatic carboxylic acids via photocatalysis.

2.
Molecules ; 28(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513273

RESUMEN

The organic dyes used in printing and dyeing wastewater have complex components, diverse structures and strong chemical stability, which make them not suitable for treatment and difficult to degrade in the environment. Porphyrins are macromolecules with 18 π electrons formed by four pyrrole molecules connected with a methylene bridge that has a stable structure. Porphyrin combines with iron to form an active intermediate with a structure similar to the cytochrome P450 enzyme, so they are widely used in the biomimetic field. In the current study, 5,10,15,20-tetra (4-carboxyphenyl) porphine ferric chloride (III) (Fe(III)TCPP) was used as a catalyst and iodosobenzene was used as an oxidant to explore the catalytic degradation of triphenylmethane dyes, such as rhodamine B (RhB) and malachite green (MG). The results of UV-Vis spectral analysis have shown that the conversion rate of the rhodamine B was over 90% when the amount of Fe(III)TCPP was 0.027 mM and the amount of iodosobenzene was eight equivalents. When the catalyst was 0.00681 mM and the amount of the oxidant was five equivalents, the conversion rate of the malachite green reached over 95%. This work provides a feasible method for the degradation of triphenylmethane dyes.


Asunto(s)
Hierro , Porfirinas , Hierro/química , Porfirinas/química , Sistema Enzimático del Citocromo P-450/química , Colorantes , Oxidantes
3.
Molecules ; 27(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36080129

RESUMEN

Aryl- and heteroaryl units are present in a wide variety of natural products, pharmaceuticals, and functional materials. The method for reduction of aryl halides with ubiquitous distribution is highly sought after for late-stage construction of various aromatic compounds. The visible-light-driven reduction of aryl halides to aryl radicals by electron transfer provides an efficient, simple, and environmentally friendly method for the construction of aromatic compounds. This review summarizes the recent progress in the generation of aryl radicals by visible-light-driven reduction of aryl halides with metal complexes, organic compounds, semiconductors as catalysts, and alkali-assisted reaction system. The ability and mechanism of reduction of aromatic halides in various visible light induced systems are summarized, intending to illustrate a comprehensive introduction of this research topic to the readers.


Asunto(s)
Compuestos Inorgánicos , Luz , Catálisis , Transporte de Electrón
4.
RSC Adv ; 13(9): 5674-5686, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36798748

RESUMEN

As a decoration method, coupling a photocatalyst with semiconductor quantum dots has been proven to be an efficient strategy for enhanced photocatalytic performance. Herein, a novel BiOCl nanosheet decorated with Bi2O3 quantum dots (QDs) was first synthesized by a facile one-step in situ chemical deposition method at room temperature. The as-prepared materials were characterized by multiple means of analysis. The Bi2O3QDs with an average diameter of about 8.0 nm were uniformly embedded on the surface of BiOCl nanosheets. The obtained Bi2O3QDs/BiOCl exhibited significantly enhanced photocatalytic performance on the degradation of the rhodamine B and ciprofloxacin, which could be attributed to the band alignment, the photosensitization effect and the strong coupling between Bi2O3 and BiOCl. In addition, the dye photosensitization effect was demonstrated by the monochromatic photodegradation experiments. The radical trapping experiments and the ESR testing demonstrated the type II charge transfer route of the heterojunction. Finally, a reasonable photocatalytic mechanism based on the relative band positions was discussed to illustrate the photoreaction process. These findings provide a good choice for the design and potential application of BiOCl-based photocatalysts in water remediation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA