Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 47(1): 731-736, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31696429

RESUMEN

The Neotropical otter, Lontra longicaudis, is an ecologically important species for freshwater ecosystems that is threatened due to habitat destruction and hunting. However, there is limited information regarding the population sizes, genetic diversity, genetic structure and gene flow of the species, which is crucial for the elaboration of conservation plans. The aim of this study was to isolate and characterize microsatellites for L. longicaudis, using Illumina paired-end-sequencing. Initial amplification tests were performed in 48 loci, out of which, 13 yielded high-quality PCR products and thus were further evaluated. Genetic diversity and discrimination power of the 13 microsatellite loci was assessed using 19 non-invasive samples collected in the Jamapa basin in Veracruz, Mexico and blood samples from six captive individuals. All loci were polymorphic, the number of alleles per locus ranged from 4 to 10, the observed heterozygosity from 0.21 to 0.69, and the expected heterozygosity from 0.55 to 0.82. The combined set of 13 microsatellites showed a high power for discriminating among individuals (probability of identity PID = 1.551 × 10-16) and among siblings (probability of identity of siblings PIDSIB = 3.349 × 10-06). A combination of nine loci are sufficient to discriminate among siblings with high confidence (PIDSIB < 0.0001). The new set of microsatellites for the Neotropical otter reported here will provide a useful genetic tool to assess population genetic patterns and ecological parameters of the species.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Repeticiones de Microsatélite/genética , Nutrias/genética , Animales , Ecosistema , Biología del Agua Dulce , Variación Genética/genética , Genética de Población/métodos , México , Reacción en Cadena de la Polimerasa
2.
Ecotoxicology ; 28(9): 1023-1031, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31489592

RESUMEN

Copper (Cu) appears to be consistently more toxic to anuran species relative to other vertebrate taxa. There are limited Cu toxicity data for salamanders; of the few studies conducted on salamanders, most examined Cu effects on the embryonic, but not the larval, stage. We performed acute toxicity experiments, to quantify LC50s, on Harrison stage 46 larvae (free swimming hatchlings with egg yolk completely absorbed) of three ambystomatid salamander species. Each LC50 experiment used exposure concentrations of 10, 20, 30, 40, 50, and 60 µg/L with 10 replicates per concentration each containing one larva. We found very high toxicity for all species compared to previously published research on the embryo stage. Specifically, the 4-d LC50s for Ambystoma tigrinum and A. opacum were 35.3 and 18.73 µg/L, respectively. The same Cu concentrations caused similar toxicity to A. talpoideum (LC50 = 47.88 µg/L), but exposures required up to 48 d to elicit the same level of mortality. A time-to-event analysis indicated that time to mortality was significantly affected by Cu concentration. Additionally, for A. talpoideum, we observed that elevated levels of Cu decreased growth rate. Comparisons with previously reported Cu toxicity for embryos suggest that, as with fish, Cu may be more toxic to larval salamander stages than for embryos. Further, our data suggest that Cu is an important environmental contaminant that deserves increased scrutiny on the potential for population-level effects where contamination has occurred in wetlands and streams inhabited by salamanders.


Asunto(s)
Ambystoma/metabolismo , Cobre/toxicidad , Contaminantes Químicos del Agua/toxicidad , Ambystoma/crecimiento & desarrollo , Animales , Larva/crecimiento & desarrollo , Larva/metabolismo , Dosificación Letal Mediana , Especificidad de la Especie , Pruebas de Toxicidad Aguda/veterinaria
3.
Mol Ecol ; 26(4): 1060-1074, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28026889

RESUMEN

Understanding the demography of species over recent history (e.g. <100 years) is critical in studies of ecology and evolution, but records of population history are rarely available. Surveying genetic variation is a potential alternative to census-based estimates of population size, and can yield insight into the demography of a population. However, to assess the performance of genetic methods, it is important to compare their estimates of population history to known demography. Here, we leveraged the exceptional resources from a wetland with 37 years of amphibian mark-recapture data to study the utility of genetically based demographic inference on salamander species with documented population declines (Ambystoma talpoideum) and expansions (A. opacum), patterns that have been shown to be correlated with changes in wetland hydroperiod. We generated ddRAD data from two temporally sampled populations of A. opacum (1993, 2013) and A. talpoideum (1984, 2011) and used coalescent-based demographic inference to compare alternate evolutionary models. For both species, demographic model inference supported population size changes that corroborated mark-recapture data. Parameter estimation in A. talpoideum was robust to our variations in analytical approach, while estimates for A. opacum were highly inconsistent, tempering our confidence in detecting a demographic trend in this species. Overall, our robust results in A. talpoideum suggest that genome-based demographic inference has utility on an ecological scale, but researchers should also be cognizant that these methods may not work in all systems and evolutionary scenarios. Demographic inference may be an important tool for population monitoring and conservation management planning.


Asunto(s)
Genética de Población , Urodelos/clasificación , Animales , Ecología , Genómica , Densidad de Población , South Carolina , Urodelos/genética , Humedales
4.
Ecol Appl ; 26(6): 1721-1732, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27755699

RESUMEN

Chemical contamination is often suggested as an important contributing factor to amphibian population declines, but direct links are rarely reported. Population modeling provides a quantitative method to integrate toxicity data with demographic data to understand the long-term effects of contaminants on population persistence. In this study we use laboratory-derived embryo and larval toxicity data for two anuran species to investigate the potential for toxicity to contribute to population declines. We use the southern toad (Anaxyrus terrestris) and the southern leopard frog (Lithobates sphenocephalus) as model species to investigate copper (Cu) toxicity. We use matrix models to project populations through time and quantify extinction risk (the probability of quasi-extinction in 35 yr). Life-history parameters for toads and frogs were obtained from previously published literature or unpublished data from a long-term (>35 yr) data set. In addition to Cu toxicity, we investigate the role of climate change on amphibian populations by including the probability of early pond drying that results in catastrophic reproductive failure (CRF, i.e., complete mortality of all larval individuals). Our models indicate that CRF is an important parameter for both species as both were unable to persist when CRF probability was >50% for toads or 40% for frogs. Copper toxicity alone did not result in significant effects on extinction risk unless toxicity was very high (>50% reduction in survival parameters). For toads, Cu toxicity and high probability of CRF both resulted in high extinction risk but no synergistic (or greater than additive) effects between the two stressors occurred. For leopard frogs, in the absence of CRF survival was high even under Cu toxicity, but with CRF Cu toxicity increased extinction risk. Our analyses highlight the importance of considering multiple stressors as well as species differences in response to those stressors. Our models were consistently most sensitive to juvenile and adult survival, further suggesting the importance of terrestrial stages to population persistence. Future models will incorporate multiple wetlands with different combinations of stressors to understand if our results for a single wetland result in a population sink within the landscape.


Asunto(s)
Anuros/fisiología , Cambio Climático , Cobre/toxicidad , Extinción Biológica , Contaminantes Químicos del Agua/toxicidad , Animales , Larva/efectos de los fármacos , Modelos Biológicos , Reproducción/efectos de los fármacos , Factores de Riesgo , Procesos Estocásticos
5.
Dis Aquat Organ ; 121(1): 1-14, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27596855

RESUMEN

Amphibian diseases, such as chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) and ranaviral disease caused by ranaviruses, are often linked to global amphibian population declines, yet the ecological dynamics of both pathogens are poorly understood. The goal of our study was to determine the baseline prevalence, pathogen loads, and co-infection rate of Bd and ranavirus across the Savannah River Site (SRS) in South Carolina, USA, a region with rich amphibian diversity and a history of amphibian-based research. We tested over 1000 individuals, encompassing 21 amphibian species from 11 wetlands for both Bd and ranavirus. The prevalence of Bd across individuals was 9.7%. Using wetland means, the mean (±SE) Bd prevalence was 7.9 ± 2.9%. Among toad species, Anaxyrus terrestris had 95 and 380% greater odds of being infected with Bd than Scaphiopus holbrookii and Gastrophryne carolinensis, respectively. Odds of Bd infection in adult A. terrestris and Lithobates sphenocephalus were 75 to 77% greater in metal-contaminated sites. The prevalence of ranavirus infections across all individuals was 37.4%. Mean wetland ranavirus prevalence was 29.8 ± 8.8% and was higher in post-metamorphic individuals than in aquatic larvae. Ambystoma tigrinum had 83 to 85% higher odds of ranavirus infection than A. opacum and A. talpoideum. We detected a 4.8% co-infection rate, with individuals positive for ranavirus having a 5% higher occurrence of Bd. In adult Anaxyrus terrestris, odds of Bd infection were 13% higher in ranavirus-positive animals and odds of co-infection were 23% higher in contaminated wetlands. Overall, we found the pathogen prevalence varied by wetland, species, and life stage.


Asunto(s)
Anfibios , Quitridiomicetos/aislamiento & purificación , Infecciones por Virus ADN/veterinaria , Micosis/veterinaria , Ranavirus/aislamiento & purificación , Animales , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/virología , Micosis/epidemiología , Micosis/microbiología , Ríos , South Carolina/epidemiología , Carga Viral , Humedales
6.
Ecotoxicology ; 25(6): 1278-86, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27272662

RESUMEN

Natural and anthropogenic stressors typically do not occur in isolation; therefore, understanding ecological risk of contaminant exposure should account for potential interactions of multiple stressors. Realistically, common contaminants can also occur chronically in the environment. Because parental exposure to stressors may cause transgenerational effects on offspring, affecting their ability to cope with the same or novel environmental stressors, the exposure histories of generations preceding that being tested should be considered. To examine multiple stressor and parental exposure effects we employed a 2 × 2 × 2 factorial design in outdoor 1000-L mesocosms (n = 24). Larval southern toads (Anaxyrus terrestris), bred from parents collected from reference and metal-contaminated sites, were exposed to two levels of both an anthropogenic (copper-0, 30 µg/L Cu) and natural (predator cue - present/absent) stressor and reared to metamorphosis. Toads from the metal-contaminated parental source population were smaller at metamorphosis and had delayed development; i.e., a prolonged larval period. Similarly, larval Cu exposure also reduced size at metamorphosis and prolonged the larval period. We, additionally, observed a significant interaction between larval Cu and predator-cue exposure on larval period, wherein delayed emergence was only present in the 30-µg/L Cu treatments in the absence of predator cues. The presence of parental effects as well as an interaction between aquatic stressors on commonly measured endpoints highlight the importance of conducting multistressor studies across generations to obtain data that are more relevant to field conditions in order to determine population-level effects of contaminant exposure.


Asunto(s)
Bufonidae/fisiología , Monitoreo del Ambiente , Metales/toxicidad , Estrés Fisiológico , Contaminantes Químicos del Agua/toxicidad , Animales , Cadena Alimentaria , Metamorfosis Biológica/efectos de los fármacos
7.
Dis Aquat Organ ; 114(1): 77-81, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25958808

RESUMEN

Ranaviruses are double-stranded DNA viruses that infect amphibians, fish, and reptiles, causing global epidemics in some amphibian populations. It is important to identify new species that may be susceptible to the disease, particularly if they reside in the same habitat as other at-risk species. On the Savannah River Site (SRS) in Aiken, South Carolina, USA, ranaviruses are present in several amphibian populations, but information is lacking on the presence, prevalence, and morbidity of the virus in reptile species. An eastern mud turtle Kinosternon subrubrum captured on the SRS in April 2014 exhibited clinical signs of a ranaviral infection, including oral plaque and conjunctivitis. Quantitative PCR analyses of DNA from liver tissue, ocular, oral, nasal, and cloacal swabs were all positive for ranavirus, and sequencing of the template confirmed infection with a FV3-like ranavirus. Histopathologic examination of postmortem tissue samples revealed ulceration of the oral and tracheal mucosa, intracytoplasmic epithelial inclusions in the oral mucosa and tongue sections, individualized and clusters of melanomacrophages in the liver, and bacterial rods located in the liver, kidney, heart, stomach, and small intestine. This is the first report of morbidity and mortality of a mud turtle with a systemic ranaviral infection.


Asunto(s)
Infecciones por Virus ADN/veterinaria , Ranavirus , Tortugas/virología , Animales , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/patología , Infecciones por Virus ADN/virología , Resultado Fatal , South Carolina/epidemiología
8.
J Wildl Dis ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38754863

RESUMEN

Mercury (Hg) is a ubiquitous contaminant in wetlands that can cause immunosuppression in birds, which may increase susceptibility to colonization with Salmonella spp. Previously, we found that White Ibis (Eudocimus albus), a recently urbanized wading bird, shed Salmonella spp. at a higher prevalence when captured at urban sites, compared with natural sites. In this study, we sought to determine if Hg burdens in ibis are related to Salmonella status or degree of urbanization or both. We analyzed feathers from 94 ibis in Palm Beach County, Florida, USA, along an urbanization gradient (0-68% urbanization) and from individuals with confirmed Salmonella spp. status (shedding or not shedding). We detected Hg in all ibis feathers (0.22-8.47 mg/kg; mean=1.96 mg/kg; SD=1.94). The Hg concentration was not significantly correlated to Salmonella spp. shedding status (Wilcoxon rank sum test, W=1170; P=0.596) but was negatively associated with capture site urbanization level (R2=0.327; P=0.026). Our findings may suggest that the immunosuppressive effects of Hg do not affect Salmonella shedding in the ibis or that Hg burdens were too low to affect Salmonella shedding status. Further, ibis that were captured in high urbanization sites appeared to have a lower risk of Hg exposure than ibis that were captured within low urbanization sites.

9.
J Environ Radioact ; 278: 107472, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38905881

RESUMEN

Methods for determining the radiation dose received by exposed biota require major improvements to reduce uncertainties and increase precision. We share our experiences in attempting to quantify external dose rates to free-ranging wildlife using GPS-coupled dosimetry methods. The manuscript is a primer on fundamental concepts in wildlife dosimetry in which the complexities of quantifying dose rates are highlighted, and lessons learned are presented based on research with wild boar and snakes at Fukushima, wolves at Chornobyl, and reindeer in Norway. GPS-coupled dosimeters produced empirical data to which numerical simulations of external dose using computer software were compared. Our data did not support a standing paradigm in risk analyses: Using averaged soil contaminant levels to model external dose rates conservatively overestimate the dose to individuals within a population. Following this paradigm will likely lead to misguided recommendations for risk management. The GPS-dosimetry data also demonstrated the critical importance of how modeled external dose rates are impacted by the scale at which contaminants are mapped. When contaminant mapping scales are coarse even detailed knowledge about each animal's home range was inadequate to accurately predict external dose rates. Importantly, modeled external dose rates based on a single measurement at a trap site did not correlate to actual dose rates measured on free ranging animals. These findings provide empirical data to support published concerns about inadequate dosimetry in much of the published Chernobyl and Fukushima dose-effects research. Our data indicate that a huge portion of that literature should be challenged, and that improper dosimetry remains a significant source of controversy in radiation dose-effect research.

10.
PLoS One ; 18(10): e0293270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37878654

RESUMEN

Coyotes (Canis latrans) colonized the eastern United States over the last century and formed a 3-species predator guild with bobcats (Lynx rufus) and gray foxes (Urocyon cinereoargenteus) across much of the southeastern United States. Diets among the three species vary along with respective impacts on game species such as white-tailed deer (Odocoileus virginianus) and wild turkeys (Meleagris gallopavo). To determine predation impacts on vertebrate prey and dietary overlap in consumption of prey items, we assessed diets of coyote, bobcat, and gray fox during spring, coinciding with white-tailed deer fawning and wild turkey nesting and brood rearing. We sampled across three sites along the Savannah River in South Carolina from mid-May through mid-June of 2020-2021. We collected 180 scat samples along 295.9 kilometers (71.1-122.4 km/site) of unpaved secondary roads and used DNA metabarcoding to determine vertebrate diet items. We identified predator species of scat using DNA metabarcoding and species-specific mtDNA fragment analysis (153 were coyote, 20 bobcat, and seven gray fox). Overall, we found evidence that two species, coyote and bobcat, consumed deer while all three consumed turkeys. Frequency of deer in the diet varied across sites for coyotes from 62-86% and wild turkey was present with a frequency of occurrence of 9% for coyotes, 5% for bobcats, and 14% for gray fox. Vertebrate diet specialization was evident across predator species with high frequency of deer in coyote diets, rabbits and small mammals in bobcat diets, and herpetofauna in gray fox diets. During deer fawning and wild turkey nesting and brood rearing, dietary overlap appears to be mediated by disparate selection of prey items, which reduced competition among coyotes, bobcats, and gray foxes. Use of DNA metabarcoding may augment our understanding of dietary preferences within this predator guild by providing increased resolution of diet composition among important game species.


Asunto(s)
Coyotes , Ciervos , Lynx , Animales , Conejos , Zorros , Sudeste de Estados Unidos
11.
Am J Bot ; 99(7): e274-6, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22739708

RESUMEN

PREMISE OF THE STUDY: Microsatellite markers were developed in Actaea racemosa to analyze population genetic structure, compare genetic diversity across the species' range, and provide a genetic context for studies of phytochemical variation. METHODS AND RESULTS: A total of seven polymorphic loci were screened in 60 individuals from 12 localities. The number of alleles per locus ranged from three to six, and observed heterozygosity ranged from 0.133 to 0.900. Most of the loci tested cross-amplified in A. pachypoda, A. podocarpa, and A. rubra, indicating the utility of these markers for the genus. CONCLUSIONS: These new loci will provide tools for population genetics studies, including the characterization of genetic variation in A. racemosa and other eastern North American species of Actaea.


Asunto(s)
Cimicifuga/genética , Repeticiones de Microsatélite , Alelos , ADN de Plantas/genética , Marcadores Genéticos , Variación Genética , Genética de Población/métodos , Plantas Medicinales/genética
13.
Am J Bot ; 99(4): e164-6, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22473981

RESUMEN

PREMISE OF THE STUDY: Microsatellite markers were developed and characterized to evaluate genetic diversity and population structure in Lilaeopsis schaffneriana subsp. recurva, an endangered species endemic to wetlands dispersed throughout southeastern Arizona, USA, and northern Sonora, Mexico. METHODS AND RESULTS: Eight loci (one of which was monomorphic) were developed and characterized in 48 individuals from two populations. The total number of alleles was 35, ranging from one to 10 per locus. Many of the primers amplified in L. carolinensis, L. chinensis, L. masonii, L. occidentalis, L. schaffneriana subsp. schaffneriana, Oxypolis fendleri, and Eryngium lemmonii. CONCLUSIONS: Development of these novel microsatellite loci will facilitate a deeper understanding of genetic diversity, mode of reproduction, and population structure not only in L. schaffneriana subsp. recurva, but also in apiaceous relatives.


Asunto(s)
Apiaceae/genética , Ecosistema , Especies en Peligro de Extinción , Repeticiones de Microsatélite/genética , Sitios Genéticos/genética
14.
Am J Bot ; 99(12): e477-80, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23196400

RESUMEN

PREMISE OF THE STUDY: Microsatellite markers were isolated and characterized in Mimulus ringens (Phrymaceae), a herbaceous wetland perennial, to facilitate studies of mating patterns and population genetic structure. • METHODS AND RESULTS: A total of 42 polymorphic loci were identified from a sample of 24 individuals from a single population in Ohio, USA. The number of alleles per locus ranged from two to nine, and median observed heterozygosity was 0.435. • CONCLUSIONS: This large number of polymorphic loci will enable researchers to quantify male fitness, patterns of multiple paternity, selfing, and biparental inbreeding in large natural populations of this species. These markers will also permit detailed study of fine-scale patterns of genetic structure.


Asunto(s)
Cartilla de ADN/genética , ADN de Plantas/genética , Repeticiones de Microsatélite , Mimulus/genética , Polimorfismo Genético , Datos de Secuencia Molecular , Ohio , Reacción en Cadena de la Polimerasa , Reproducción , Análisis de Secuencia de ADN
15.
Am J Bot ; 99(5): e220-2, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22542902

RESUMEN

PREMISE OF THE STUDY: Microsatellite markers were isolated and characterized in Berberis thunbergii, an invasive and ornamental shrub in the eastern United States, to assess genetic diversity among populations and potentially identify horticultural cultivars. METHODS AND RESULTS: A total of 12 loci were identified for the species. Eight of the loci were polymorphic and were screened in 24 individuals from two native (Tochigi and Ibaraki prefectures, Japan) and one invasive (Connecticut, USA) population and 21 horticultural cultivars. The number of alleles per locus ranged from three to seven, and observed heterozygosity ranged from 0.048 to 0.636. CONCLUSIONS: These new markers will provide tools for examining genetic relatedness of B. thunbergii plants in the native and invasive range, including phylogeographic studies and assessment of rapid evolution in the invasive range. These markers may also provide tools for examining hybridization with other related species in the invasive range.


Asunto(s)
Berberis/genética , Repeticiones de Microsatélite/genética , Cartilla de ADN/metabolismo , Especies Introducidas , Datos de Secuencia Molecular , Polimorfismo Genético
16.
Am J Bot ; 98(7): e180-2, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21700804

RESUMEN

PREMISE OF THE STUDY: We isolated and characterized microsatellite markers in Polygonum cespitosum Blume, an herbaceous annual plant species introduced into North America from Asia that has recently become invasive. METHODS AND RESULTS: A total of 12 polymorphic and 3 monomorphic loci were screened in 1-2 individuals from each of 20 populations from the introduced and native range, for a total of 24 samples. The number of alleles per locus in the polymorphic loci ranged from 3 to 9, and expected heterozygosity ranged from 0.156 to 0.838. CONCLUSIONS: These new loci will provide tools for examining genetic relatedness among introduced and native populations of this and other related species.


Asunto(s)
Técnicas Genéticas , Repeticiones de Microsatélite/genética , Polygonum/genética , Cartilla de ADN/genética , Pruebas Genéticas , Datos de Secuencia Molecular
17.
Evol Appl ; 14(8): 2039-2054, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429747

RESUMEN

Globally, human activities have resulted in rapid environmental changes that present unique challenges for wildlife. However, investigations of local adaptation in response to simultaneous exposure to multiple anthropogenic selection pressures are rare and often generate conflicting results. We used an in situ reciprocal transplant design within a quantitative genetic framework to examine how adaptive evolution and phenotypic plasticity contribute to the persistence of an amphibian population inhabiting an environment characterized by high levels of multiple toxic trace elements. We found evidence of phenotypic divergence that is largely consistent with local adaptation to an environment contaminated with multiple chemical stressors, tied to potential trade-offs in the absence of contaminants. Specifically, the population derived from the contaminated environment had a reduced risk of mortality and greater larval growth and in the contaminated environment, relative to offspring from the naïve population. Further, while survival in the uncontaminated environment was not compromised in offspring from the contaminant-exposed population, they did show delayed development and reduced growth rates over larval development, relative to the naïve population. We found no evidence of reduced additive genetic variation in the contaminant-exposed population, suggesting long-term selection in a novel environment has not reduced the evolutionary potential of that population. We also saw little evidence that past selection in the ASH environment had reduced trait plasticity in the resident population. Maternal effects were prominent in early development, but we did not detect any trends suggesting these effects were associated with the maternal transfer of toxic trace elements. Our results demonstrate the potential for adaptation to multiple contaminants in a wild amphibian population, which may have facilitated long-term persistence in a heavily impacted environment.

18.
Conserv Genet ; 11(3): 1243-1246, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20563244

RESUMEN

Mice of the genus Peromyscus, including several endangered subspecies, occur throughout North America and have been important models for conservation research. We describe 526 primer pairs that amplify microsatellite DNA loci for P. maniculatus bairdii, 467 of which also amplify in P. polionotus subgriseus. For 12 of these loci, we report diversity data from a natural population. These markers will be an important resource for future genomic studies of Peromyscus evolution and mammalian conservation.

19.
BMC Genomics ; 10: 339, 2009 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-19640266

RESUMEN

BACKGROUND: Genome elucidation is now in high gear for many organisms, and whilst genetic maps have been developed for a broad array of species, surprisingly, no such maps exist for a crocodilian, or indeed any other non-avian member of the Class Reptilia. Genetic linkage maps are essential tools for the mapping and dissection of complex quantitative trait loci (QTL), and in order to permit systematic genome scans for the identification of genes affecting economically important traits in farmed crocodilians, a comprehensive genetic linage map will be necessary. RESULTS: A first-generation genetic linkage map for the saltwater crocodile (Crocodylus porosus) was constructed using 203 microsatellite markers amplified across a two-generation pedigree comprising ten full-sib families from a commercial population at Darwin Crocodile Farm, Northern Territory, Australia. Linkage analyses identified fourteen linkage groups comprising a total of 180 loci, with 23 loci remaining unlinked. Markers were ordered within linkage groups employing a heuristic approach using CRIMAP v3.0 software. The estimated female and male recombination map lengths were 1824.1 and 319.0 centimorgans (cM) respectively, revealing an uncommonly large disparity in recombination map lengths between sexes (ratio of 5.7:1). CONCLUSION: We have generated the first genetic linkage map for a crocodilian, or indeed any other non-avian reptile. The uncommonly large disparity in recombination map lengths confirms previous preliminary evidence of major differences in sex-specific recombination rates in a species that exhibits temperature-dependent sex determination (TSD). However, at this point the reason for this disparity in saltwater crocodiles remains unclear.This map will be a valuable resource for crocodilian researchers, facilitating the systematic genome scans necessary for identifying genes affecting complex traits of economic importance in the crocodile industry. In addition, since many of the markers placed on this genetic map have been evaluated in up to 18 other extant species of crocodilian, this map will be of intrinsic value to comparative mapping efforts aimed at understanding genome content and organization among crocodilians, as well as the molecular evolution of reptilian and other amniote genomes. As researchers continue to work towards elucidation of the crocodilian genome, this first generation map lays the groundwork for more detailed mapping investigations, as well as providing a valuable scaffold for future genome sequence assembly.


Asunto(s)
Caimanes y Cocodrilos/genética , Mapeo Cromosómico , Ligamiento Genético , Animales , Femenino , Genómica , Genotipo , Masculino , Repeticiones de Microsatélite , Northern Territory , Sitios de Carácter Cuantitativo , Recombinación Genética , Análisis de Secuencia de ADN
20.
Aquat Toxicol ; 207: 163-169, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30572176

RESUMEN

Human activities have radically shaped the global landscape, affecting the structure and function of ecosystems. Habitat loss is one of the most visible changes to the landscape and a primary driver of species declines; however, anthropogenic environmental contamination also threatens population persistence, but is not as readily observed. Aquatic organisms are especially susceptible to chemical perturbations, which can negatively impact survival and fitness related traits. Some populations have evolved tolerance to chemical stressors, which could mitigate the consequences associated with contamination. Amphibians are experiencing global declines due to multiple stressors and are particularly at risk to aquatic chemical stressors due to their permeable skin and reliance on wetlands for reproduction and larval development. However, amphibians also have substantial plasticity in response to environmental variation. We designed our study to examine whether tolerance to heavy metals is greater in Southern toad (Anaxyrus terrestris) larvae from wetlands with a history of contamination. Considering many of the most common trace elements elicit acute toxicity by disrupting osmotic- and ionic-regulation, we hypothesized that alterations to these aspects of physiology resulting from multigenerational exposure to trace element mixtures would be the most likely routes by which tolerance would evolve. We used copper (Cu) as a proxy for heavy metal exposure because it is a widely distributed aquatic stressor known to cause osmotic stress that can also cause mortality at levels commonly encountered in the environment. We found considerable within and among population variation in Cu tolerance, as measured by time to death. Larvae from populations living in sites contaminated with mixtures of heavy metals associated with coal fly ash were no more tolerant to Cu than those from reference sites. However, larvae from a population inhabiting a constructed wetland complex with high Cu levels were significantly more tolerant; having half the risk of mortality as reference animals. This wetland complex was created < 20 years ago, thus if elevated Cu tolerance in this population is due to selection in the aquatic habitat, such adaptation may occur rapidly (i.e. ∼10 generation). Our results provide evidence that amphibians may be able to evolve tolerance in response to trace element contamination, though such tolerance may be specific to the combination of contaminants present.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Bufonidae/fisiología , Exposición a Riesgos Ambientales , Metales Pesados/toxicidad , Animales , Monitoreo del Ambiente , Geografía , Larva/efectos de los fármacos , Óvulo/metabolismo , Análisis de Supervivencia , Oligoelementos/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA