RESUMEN
One of the physiological mechanisms that can limit the fish's ability to face hypoxia or elevated temperature, is maximal cardiac performance. Yet, few studies have measured how cardiac electrical activity and associated calcium cycling proteins change with acclimation to those environmental stressors. To examine this, we acclimated European sea bass for 6 weeks to three experimental conditions: a seasonal average temperature in normoxia (16 °C; 100% air sat.), an elevated temperature in normoxia (25 °C; 100% air sat.) and a seasonal average temperature in hypoxia (16 °C; 50% air sat.). Following each acclimation, the electrocardiogram was measured to assess how acclimation affected the different phases of cardiac cycle, the maximal heart rate (fHmax) and cardiac thermal performance during an acute increase of temperature. Whereas warm acclimation prolonged especially the diastolic phase of the ventricular contraction, reduced the fHmax and increased the cardiac arrhythmia temperature (TARR), hypoxic acclimation was without effect on these functional indices. We measured the level of two key proteins involved with cellular relaxation of cardiomyocytes, i.e. sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). Warm acclimation reduced protein level of both NCX and SERCA and hypoxic acclimation reduced SERCA protein levels without affecting NCX. The changes in ventricular NCX level correlated with the observed changes in diastole duration and fHmax as well as TARR. Our results shed new light on mechanisms of cardiac plasticity to environmental stressors and suggest that NCX might be involved with the observed functional changes, yet future studies should also measure its electrophysiological activity.
Asunto(s)
Lubina , Intercambiador de Sodio-Calcio , Aclimatación/fisiología , Animales , Lubina/fisiología , Calcio/metabolismo , Diástole , Hipoxia , Miocitos Cardíacos , Intercambiador de Sodio-Calcio/metabolismoRESUMEN
The viability of single and coaxial electrospray techniques to encapsulate model peptide-angiotensin II into near mono-dispersed spherical, nanocarriers comprising N-octyl-O-sulphate chitosan and tristearin, respectively, was explored. The stability of peptide under controlled electric fields (during particle generation) was evaluated. Resulting nanocarriers were analysed using dynamic light scattering and electron microscopy. Cell toxicity assays were used to determine optimal peptide loading concentration (~1 mg/ml). A trout model was used to assess particle behaviour in vivo. A processing limit of 20 kV was determined. A range of electrosprayed nanoparticles were formed (between 100 and 300 nm) and these demonstrated encapsulation efficiencies of ~92 ± 1.8%. For the single needle process, particles were in matrix form and for the coaxial format particles demonstrated a clear core-shell encapsulation of peptide. The outcomes of in vitro experiments demonstrated triphasic activity. This included an initial slow activity period, followed by a rapid and finally a conventional diffusive phase. This was in contrast to results from in vivo cardiovascular activity in the trout model. The results are indicative of the substantial potential for single/coaxial electrospray techniques. The results also clearly indicate the need to investigate both in vitro and in vivo models for emerging drug delivery systems.
Asunto(s)
Nanopartículas , Animales , Línea Celular , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Oncorhynchus mykiss , Tamaño de la PartículaRESUMEN
Fluoxetine (FLX) is a selective serotonin (5-HT) reuptake inhibitor present in the aquatic environment which is known to bioconcentrate in the brains of exposed fish. FLX acts as a disruptor of various neuroendocrine functions in the brain, but nothing is known about the possible consequence of FLX exposure on the cardio-ventilatory system in fish. Here we undertook to investigate the central actions of FLX on ventilatory and cardiovascular function in unanesthetized rainbow trout (Oncorhynchus mykiss). Intracerebroventricular (ICV) injection of FLX (dosed between 5 and 25 µg) resulted in a significantly elevated total ventilation (VTOT), with a maximum hyperventilation of +176% (at a dose of 25µg) compared with vehicle injected controls. This increase was due to an increase in ventilatory amplitude (VAMP: +126%) with minor effects on ventilatory frequency. The highest dose of FLX (25 µg) produced a significant increase in mean dorsal aortic blood pressure (PDA: +20%) without effects on heart rate (ƒH). In comparison, intra-arterial injections of FLX (500-2,500 µg) had no effect on ventilation but the highest doses increased both PDA and ƒH. The ICV and IA cardio-ventilatory effects of FLX were very similar to those previously observed following injections of 5-HT, indicating that FLX probably acts via stimulating endogenous 5-HT activity through inhibition of 5-HT transporter(s). Our results demonstrate for the first time in fish that FLX administered within the brain exerts potent stimulatory effects on ventilation and blood pressure increase. The doses of FLX given to fish in our study are higher than the brain concentrations of FLX in fish that result from acute exposure to FLX through the water. Nonetheless, our results indicate possible disrupting action of long term exposure to FLX discharged into the environment on central target sites sensitive to 5-HT involved in cardio-ventilatory control.
Asunto(s)
Fluoxetina/administración & dosificación , Fluoxetina/farmacología , Corazón/fisiología , Oncorhynchus mykiss/fisiología , Respiración/efectos de los fármacos , Anestesia , Animales , Corazón/efectos de los fármacos , Inyecciones Intraarteriales , Inyecciones Intraventriculares , Factores de TiempoRESUMEN
In the brains of teleosts, angiotensin II (ANG II), one of the main effector peptides of the renin-angiotensin system, is implicated in various physiological functions notably body fluid and electrolyte homeostasis and cardiovascular regulation, but nothing is known regarding the potential action of ANG II and other angiotensin derivatives on ventilation. Consequently, the goal of the present study was to determine possible ventilatory and cardiovascular effects of intracerebroventricular injection of picomole doses (5-100 pmol) of trout [Asn(1)]-ANG II, [Asp(1)]-ANG II, ANG III, ANG IV, and ANG 1-7 into the third ventricle of unanesthetized trout. The central actions of these peptides were also compared with their ventilatory and cardiovascular actions when injected peripherally. Finally, we examined the presence of [Asn(1)]-ANG II, [Asp(1)]-ANG II, ANG III, and ANG IV in the brain and plasma using radioimmunoassay coupled with high-performance liquid chromatography. After intracerebroventricular injection, [Asn(1)]-ANG II and [Asp(1)]-ANG II two ANG IIs, elevated the total ventilation through a selective stimulatory action on the ventilation amplitude. However, the hyperventilatory effect of [Asn(1)]-ANG II was threefold higher than the effect of [Asp(1)]-ANG II at the 50-pmol dose. ANG III, ANG IV, and ANG 1-7 were without effect. In addition, ANG IIs and ANG III increased dorsal aortic blood pressure (P(DA)) and heart rate (HR). After intra-arterial injections, none of the ANG II peptides affected the ventilation but [Asn(1)]-ANG II, [Asp(1)]-ANG II, and ANG III elevated P(DA) (50 pmol: +80%, +58% and +48%, respectively) without significant decrease in HR. In brain tissue, comparable amounts of [Asn(1)]-ANG II and [Asp(1)]-ANG II were detected (ca. 40 fmol/mg brain tissue), but ANG III was not detected, and the amount of ANG IV was about eightfold lower than the content of the ANG IIs. In plasma, ANG IIs were also the major angiotensins (ca. 110 fmol/ml plasma), while significant but lower amounts of ANG III and ANG IV were present in plasma. In conclusion, our study suggests that the two ANG II isoforms produced within the brain may act as a neurotransmitter and/or neuromodulator to regulate the cardioventilatory functions in trout. In the periphery, two ANG IIs and their COOH-terminal peptides may act as a circulating hormone preferentially involved in cardiovascular regulations.
Asunto(s)
Angiotensina III/farmacología , Angiotensina II/análogos & derivados , Angiotensina II/farmacología , Angiotensina I/farmacología , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Branquias/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Trucha/fisiología , Angiotensina I/administración & dosificación , Angiotensina II/administración & dosificación , Angiotensina III/administración & dosificación , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Branquias/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Inyecciones Intraventriculares , Masculino , Fragmentos de Péptidos/administración & dosificación , Factores de TiempoRESUMEN
Calcitonin gene-related peptide (CGRP) and its receptors are widely distributed in the tissues of teleost fish, including the brain, but little is known about the ventilatory and cardiovascular effects of the peptide in these vertebrates. The present study was undertaken to compare the central and peripheral actions of graded doses (5-50 pmol) of trout CGRP on ventilatory and cardiovascular variables in unanesthetized rainbow trout. Compared with vehicle, intracerebroventricular injection of CGRP significantly elevated the ventilation frequency (f(V)) and the ventilation amplitude (V(AMP)) and, consequently, the total ventilation (V(TOT)). The maximum hyperventilatory effect of CGRP (V(TOT): +300%), observed at a dose of 50 pmol, was mostly due to its stimulatory action on V(AMP) (+200%) rather than f(V) (+30%). In addition, CGRP produced a significant and dose-dependent increase in mean dorsal aortic blood pressure (P(DA)) (50 pmol: +40%) but the increase in heart rate (f(H)) was not significant. Intra-arterial injections of CGRP were without effect on the ventilatory variables but significantly and dose-dependently elevated P(DA) (50 pmol: +36%) without changing f(H). At the highest dose tested, this hypertensive phase was preceded by a rapid and transient hypotensive response. In conclusion, our study suggests that endogenous CGRP within the brain of the trout may act as a potent neurotransmitter and/or neuromodulator in the regulation of cardio-ventilatory functions. In the periphery, endogenous CGRP may act as a local and/or circulating hormone preferentially involved in vasoregulatory mechanisms.
Asunto(s)
Péptido Relacionado con Gen de Calcitonina/farmacología , Oncorhynchus mykiss/fisiología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Péptido Relacionado con Gen de Calcitonina/administración & dosificación , Péptido Relacionado con Gen de Calcitonina/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Inyecciones Intraarteriales , Inyecciones Intraventriculares , Masculino , Respiración/efectos de los fármacosRESUMEN
Although PACAP and VIP exert diverse actions on heart and blood vessels along the vertebrate phylum, no information is currently available concerning the potential role of these peptides on the regulation of the baroreflex response, a major mechanism for blood pressure homeostasis. Consequently, the goal of this study was to examine in our experimental model, the unanesthetized rainbow trout Oncorhynchus mykiss, whether PACAP and VIP are involved in the regulation of the cardiac baroreflex sensitivity (BRS). Cross-spectral analysis techniques using a fast Fourier transform algorithm were employed to calculate the coherence, phase and gain of the transfer function between spontaneous fluctuations of systolic arterial blood pressure and R-R intervals of the electrocardiogram. The BRS was estimated as the mean of the gain of the transfer function when the coherence between the two signals was high and the phase negative. Compared with vehicle, intracerebroventricular (i.c.v.) injections of trout PACAP-27 and trout VIP (25-100 pmol) dose-dependently reduced the cardiac BRS to the same extent with a threshold dose of 50 pmol for a significant effect. When injected intra-arterially at the same doses as for i.c.v. injections, only the highest dose of VIP (100 pmol) significantly attenuated the BRS. These results suggest that the endogenous peptides PACAP and VIP might be implicated in the central control of cardiac baroreflex functions in trout.
Asunto(s)
Barorreflejo/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Péptido Intestinal Vasoactivo/farmacología , Animales , TruchaRESUMEN
The stress-related neurohormonal peptides corticotropin-releasing factor (CRF) and urotensin-I (U-I), an ortholog of mammalian urocortin 1, are widely distributed in the central nervous systems of teleost fish but little is known about their possible central neurotropic actions. In the present study, we investigated the effect of intracerebroventricular (ICV) injection of CRF and U-I (1-10pmol) on ventilatory and cardiovascular variables in our established unanaesthetized trout model. CRF and U-I produced a significant dose-dependent and long-lasting increase in the ventilatory frequency (VF) and the ventilatory amplitude (VA). Consequently the net effect of these peptides was a hyperventilatory response since the total ventilation (VTOT) was significantly elevated. However, CRF evoked a significant hyperventilatory response 5-10min sooner than that observed after ICV administration of U-I and the hyperventilatory effect of 10pmol CRF was twofold higher than that of equimolar dose of U-I. Pre-treatment of the trout with the antagonist, alpha-helical CRF(9-41), significantly reduced by about threefold the CRF-induced increase in VF, VA and VTOT. The most significant cardiovascular action of central CRF and U-I was to evoke a hypertensive response without changing the heart rate. Peripheral injection of CRF and U-I at doses of 5 and 50pmol produced no change in VF, VA or VTOT. Only a transient hypertensive response without change in heart rate was observed after the injection of the highest dose of U-I. Our results demonstrate that in a teleost fish, CRF and U-I produce a potent hyperventilatory response only when injected centrally. The two endogenous stress-related neuropeptides may play an important stimulatory role acting as neurotransmitters and/or neuromodulators in the central control of ventilatory apparatus during stress.
Asunto(s)
Hormona Liberadora de Corticotropina/farmacología , Oncorhynchus mykiss/metabolismo , Urotensinas/farmacología , Animales , Encéfalo/anatomía & histología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Sistema Cardiovascular/efectos de los fármacos , Hormona Liberadora de Corticotropina/administración & dosificación , Hormona Liberadora de Corticotropina/metabolismo , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Inyecciones Intraventriculares , Masculino , Modelos Biológicos , Estrés Fisiológico/fisiología , Urotensinas/administración & dosificación , Urotensinas/metabolismoRESUMEN
Urotensin-II (U-II) was originally considered to be exclusively the product of the caudal neurosecretory system (CNSS) of teleost fish, but it has now been demonstrated that U-II is widely expressed in peripheral tissues and nervous structures of species from lampreys to mammals. However, very little is known regarding the physiological effects of this peptide in its species of origin. In the present review, we summarize the most significant results relating to the cardiovascular, ventilatory, and motor effects of centrally and peripherally administered synthetic trout U-II in our experimental animal model, the unanesthetized trout Oncorhynchus mykiss. In addition, we compare the actions of U-II with those of other neurohormonal peptides, particularly with the actions of urotensin-I, a 41-amino acid residue peptide paralogous to corticotropin-releasing hormone that is co-localized with U-II within neurons of the CNSS.
Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Oncorhynchus mykiss/fisiología , Sistema Respiratorio/efectos de los fármacos , Urotensinas/farmacología , Animales , Sistema Nervioso Central/anatomía & histología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/fisiologíaRESUMEN
In mammals, a large body of evidence supports the existence of a brain renin-angiotensin system (RAS) acting independently or synergistically with the endocrine RAS to maintain diverse physiological functions, notably cardiovascular homeostasis. The RAS is of ancient origin and although most components of the RAS are present within the brain of teleost fishes, little is known regarding the central physiological actions of the RAS in these vertebrates. The present review encompasses the most relevant functional data for a role of the brain RAS in cardiovascular regulations in our experimental animal model, the unanesthetized trout Oncorhynchus mykiss. This paper mainly focuses on the central effect of angiotensin II (ANG II) on heart rate, blood pressure, heart rate variability and cardiac baroreflex, after intracerebroventricular injection or local microinjection of the peptide within the dorsal vagal motor nucleus. The probable implications of the parasympathetic nervous system in ANG II-evoked changes in the cardiac responses are also discussed.
Asunto(s)
Angiotensina II/farmacología , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Trucha/fisiología , Animales , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Sistema Nervioso Parasimpático/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacosRESUMEN
The goal of the present study was to investigate the central action of native angiotensin II (ANG II) on the spontaneous baroreflex sensitivity (BRS) in unanesthetized trout. The animals were equipped with two subcutaneous electrocardiographic (ECG) electrodes, a dorsal aorta catheter and an intracerebroventricular (ICV) cannula which was inserted within the third ventricle of the brain. The ECG and the systolic blood pressure (SBP) signals were recorded during a pre-injection period of 5 min and during five post-injection periods of 5 min. All injections were made at the fifth minute of the test. The time-series were processed with a sequence technique in order to detect the sequences of three or more consecutive increases in the SBP pulse, or three or more decreases in the SBP pulse correlated respectively with one delay beat increase of the RR interval of the ECG signal or shortening of this interval. The slope of the average regression line between the SBP and the RR intervals for each type of sequence was taken as a measure of the spontaneous BRS. Compared with pre-injection values, the ICV injection of vehicle (0.5 microl) had no effect on heart rate (HR), SBP, the total number of positive or negative sequences or on the spontaneous BRS during the post-injection periods. By contrast, ANG II at doses of 5 and 50 pmol increased HR but only 50 pmol ANG II elevated SBP. For all doses, ANG II depressed the spontaneous BRS, but the peptide had no effect upon the number of each baroreflex sequences. Intra-arterial injections of atropine dramatically reduced the number of positive and negative baroreflex sequences and decreased the sensitivity of the few remaining sequences, suggesting that the autonomic control of the cardiac BRS was solely due to vagal parasympathetic control. In atropinized trout the ICV injection of 5 pmol ANG II had no effect upon HR, SBP and the baroreflex parameters. This study determines for the first time the spontaneous BRS in a non-mammalian species and demonstrates an inhibitory action of ICV injection of ANG II upon this variable through a probable control of the vagal parasympathetic activity.
Asunto(s)
Angiotensina II/farmacología , Barorreflejo/efectos de los fármacos , Oncorhynchus mykiss/fisiología , Angiotensina II/administración & dosificación , Animales , Atropina/administración & dosificación , Atropina/farmacología , Presión Sanguínea/efectos de los fármacos , Broncodilatadores/administración & dosificación , Broncodilatadores/farmacología , Relación Dosis-Respuesta a Droga , Electrocardiografía , Frecuencia Cardíaca/efectos de los fármacos , Inyecciones Intraventriculares , Factores de Tiempo , Vasoconstrictores/administración & dosificación , Vasoconstrictores/farmacologíaRESUMEN
The baroreflex response is an essential component of the cardiovascular regulation that buffers abrupt changes in blood pressure to maintain homeostasis. Urotensin II (UII) and its receptor UT are present in the brain and in peripheral cardiovascular tissues of fish and mammals. Intracerebroventricular (ICV) injection of UII in these vertebrates provokes hypertension and tachycardia, suggesting that the cardio-inhibitory baroreflex response is impaired. Since nothing is known about the effect of UII on the cardiac baroreflex sensitivity (BRS), we decided to clarify the changes in spontaneous BRS using a cross spectral analysis technique of systolic blood pressure (SBP) and R-R interval variabilities after ICV and intra-arterial (IA) injections of trout UII in the unanesthetized trout. We contrasted the effects of UII with those observed for the UII-related peptides (URP), URP1 and URP2. Compared with vehicle-injected trout, ICV injection of UII (5-500 pmol) produced a gradual increase in SBP, a decrease in the R-R interval (reflecting a tachycardia) associated with a dose-dependent reduction of the BRS. The threshold dose for a significant effect on these parameters was 50 pmol (BRS; -55%; 1450 ± 165 ms/kPa vs. 3240 ± 300 ms/kPa; P < 0.05). Only the 500-pmol dose of URP2 caused a significant increase in SBP without changing significantly the R-R interval but reduced the BRS. IA injection of UII (5-500 pmol) caused a dose-dependent elevation of SBP. Contrasting with the ICV effects of UII, the R-R interval increased (reflecting a bradycardia) up to the 50-pmol dose while the BRS remained unchanged (50 pmol; 2530 ± 270 ms/kPa vs. 2600 ± 180 ms/kPa; P < 0.05). Nonetheless, the highest dose of UII reduced the BRS as did the highest dose of URP1. In conclusion, the contrasting effect of low picomolar doses of UII after central and peripheral injection on the BRS suggests that only the central urotensinergic system is involved in the attenuation of the BRS. The limited and quite divergent effects of URP1 and URP2 on the BRS, indicate that the action of UII is specific for this peptide. Further studies are required to elucidate the site(s) and mechanisms of action of UII on the baroreflex pathways. Whether such effects of central UII on the BRS exist in mammals including humans warrants further investigations.
RESUMEN
The QT interval of the electrocardiogram (ECG) is a measure of the duration of the ventricular depolarization and repolarization. In fish as in human, the QT interval is positively correlated with the RR interval of the ECG, a measure of the cardiac cycle length. Urotensin II (UII) is a neuropeptide that has been highly conserved from fish to human, and UII and its receptor (UT) are expressed in cardiovascular tissues including the heart. Although UII exerts potent cardiovascular actions, its possible effects on the QT interval have never been investigated. The goal of the present study was to provide insight into the potential effect of UII on the QT interval in an established in vivo trout model. To this end, the effects of UII on dorsal aortic blood pressure (PDA), RR, QT intervals and corrected QT (QTc) for RR interval, were investigated after intra-arterial (IA) injection of 5, 50 and 100 pmol UII. The effects of UII were compared to those of two structurally UII-related peptides (URPs), URP1 and URP2, and to those of arginine vasotocin (AVT), homolog of the mammalian arginine vasopressin. IA injection of vehicle or 5 pmol UII had no effect on the various parameters. At the 50-pmol dose, UII evoked its usual increase in PDA with a peak value observed 15 min after the injection (+22% from baseline, P<0.001). This hypertensive effect of UII was accompanied by a significant increase in the RR interval (+18%, P<0.001), i.e. a bradycardia, and these effects remained constant until the end of the recording. The highest dose of UII evoked similar hypertensive and bradycardic effects. Of interest, the QT interval did not change during the bradycardic action of UII (50 and 100 pmol) but the QTc interval significantly decreased. In trout pre-treated with urantide, a peptidic antagonist of UT, the hypertensive and bradycardic actions of 50 pmol UII were reduced 3-fold and no change occurred in the QT and QTc intervals. In trout pre-treated with blockers of the autonomic nervous system, the hypertensive effect of UII was maintained but no change appeared in RR, QT and QTc intervals. IA injections of 50 pmol URPs were without action on the preceding parameters. IA administration of 50 pmol AVT provoked quite similar increase in PDA, and elevation of the RR interval to those evoked by IA injection of UII but, in contrast to UII, AVT injection induced a highly significant and sustained prolongation of the QT interval compared to baseline (+7%, P<0.001) without change in QTc. Our results are indicative of a lack of QT interval change during UII-evoked bradycardia but not after AVT-induced bradycardia and suggest for the first time that some compensatory mechanism specific for the UII peptide is working to stabilize the QT interval. Further research is needed to elucidate the mechanism involved in this action of UII. The potential for UII to prevent detrimental prolongation of cardiac ventricular repolarization might be questioned.
Asunto(s)
Cardiotónicos/envenenamiento , Modelos Animales de Enfermedad , Proteínas de Peces/envenenamiento , Corazón/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Urotensinas/envenenamiento , Vasotocina/envenenamiento , Animales , Acuicultura , Sistema Nervioso Autónomo/efectos de los fármacos , Sistema Nervioso Autónomo/fisiología , Sistema Nervioso Autónomo/fisiopatología , Bradicardia/inducido químicamente , Bradicardia/fisiopatología , Bradicardia/prevención & control , Cardiotónicos/administración & dosificación , Cardiotónicos/química , Cardiotónicos/farmacología , Relación Dosis-Respuesta a Droga , Electrocardiografía Ambulatoria/efectos de los fármacos , Electrocardiografía Ambulatoria/veterinaria , Femenino , Proteínas de Peces/administración & dosificación , Proteínas de Peces/química , Proteínas de Peces/farmacología , Corazón/inervación , Corazón/fisiología , Corazón/fisiopatología , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Hipertensión/prevención & control , Inyecciones Intraarteriales , Síndrome de QT Prolongado/fisiopatología , Síndrome de QT Prolongado/prevención & control , Masculino , Oncorhynchus mykiss , Fragmentos de Péptidos/uso terapéutico , Urotensinas/administración & dosificación , Urotensinas/antagonistas & inhibidores , Urotensinas/química , Urotensinas/farmacología , Urotensinas/uso terapéutico , Vasotocina/administración & dosificación , Vasotocina/farmacologíaRESUMEN
QT interval of the electrocardiogram (ECG) is a measure of the duration of the ventricular depolarization and repolarization. In humans, prolongation of the QT interval is a known clinical risk factor for the development of ventricular arrhythmias including 'Torsades de Pointes' and possible sudden cardiac death. After oral administration, fluoxetine (FLX), as well as other selective serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitors can affect cardiac autonomic control, including the QT interval. However, the action of centrally administered FLX on the QT interval has never been explored. Consequently, using the unanesthetized trout as an animal model, we sought to compare the effects of intracerebroventricular (i.c.v.) injection of FLX (5, 15 or 25 µg) on the QT interval of the ECG with the effects observed following i.c.v. injection of 5-HT (0.05, 0.5 or 5 nmol). The QT interval was corrected for the RR interval. The highest doses of centrally administered FLX and 5-HT induced a prolongation of the corrected QT (QTc) interval reaching a maximum value of 510 min after injection (+8% and +6% respectively, P < 0.05). The intra-arterial (i.a.) injections of 5-HT and FLX were without significant effect on the QTc. The i.a. injection of blockers of the autonomic nervous system indicated that the sympathetic nervous system modulated the QTc interval. In conclusion, our data demonstrate that for the first time in any animal species, cardiac electrophysiology is sensitive to central 5-HT and that FLX within the brain may disrupt the autonomic control of ventricular repolarization.
Asunto(s)
Arritmias Cardíacas/veterinaria , Electrocardiografía/efectos de los fármacos , Fluoxetina/farmacología , Oncorhynchus mykiss/fisiología , Serotonina/farmacología , Antagonistas Adrenérgicos beta/administración & dosificación , Antagonistas Adrenérgicos beta/farmacología , Animales , Arritmias Cardíacas/inducido químicamente , Vías de Administración de Medicamentos , Femenino , Enfermedades de los Peces/inducido químicamente , Fluoxetina/administración & dosificación , Masculino , Serotonina/administración & dosificación , Agonistas de Receptores de Serotonina/toxicidad , Inhibidores Selectivos de la Recaptación de Serotonina/toxicidad , Sotalol/administración & dosificación , Sotalol/farmacologíaRESUMEN
The urotensin II (UII) gene family consists of four paralogous genes called UII, UII-related peptide (URP), URP1 and URP2. UII and URP peptides exhibit the same cyclic hexapeptide core sequence (CFWKYC) while the N- and C-terminal regions are variable. UII, URP1, and URP2 mRNAs are differentially expressed within the central nervous system of teleost fishes, suggesting that they may exert distinct functions. Although the cardiovascular, ventilatory and locomotor effects of UII have been described in teleosts, much less is known regarding the physiological actions of URPs. The goal of the present study was to compare the central and peripheral actions of picomolar doses (5-500 pmol) of trout UII, URP1, and URP2 on cardio-ventilatory variables and locomotor activity in the unanesthetized trout. Compared to vehicle, intracerebroventricular injection of UII, URP1 and URP2 evoked a gradual increase in total ventilation (V TOT) reaching statistical significance for doses of 50 and 500 pmol of UII and URP1 but for only 500 pmol of URP2. In addition, UII, URP1 and URP2 provoked an elevation of dorsal aortic blood pressure (P DA) accompanied with tachycardia. All peptides caused an increase in locomotor activity (A CT), at a threshold dose of 5 pmol for UII and URP1, and 50 pmol for URP2. After intra-arterial (IA) injection, and in contrast to their central effects, only the highest dose of UII and URP1 significantly elevated V TOT and A CT. UII produced a dose-dependent hypertensive effect with concomitant bradycardia while URP1 increased P DA and heart rate after injection of only the highest dose of peptide. URP2 did not evoke any cardio-ventilatory or locomotor effect after IA injection. Collectively, these findings support the hypothesis that endogenous UII, URP1 and URP2 in the trout brain may act as neurotransmitters and/or neuromodulators acting synergistically or differentially to control the cardio-respiratory and locomotor systems. In the periphery, the only physiological actions of these peptides might be those related to the well-known cardiovascular regulatory actions of UII. It remains to determine whether the observed divergent physiological effects of UII and URPs are due to differential interaction with the UT receptor or binding to distinct UT subtypes.
RESUMEN
The present study was performed in order to gain new insights into the existence of a brain renin-angiotensin system (RAS) in teleost fish. For this purpose, we investigated the effects of centrally administered angiotensin (ANG) I ([Asn(1),Val(5),Asn(9)]ANG I) and ANG II ([Asn(1),Val(5)]ANG II) on heart rate (HR) and heart rate variability (HRV) in the unanesthetized trout. The animals were studied before and after treatment with captopril, an angiotensin-converting enzyme (ACE) inhibitor. Trout were equipped with two subcutaneous electrocardiographic electrodes and with an intracerebroventricular (i.c.v.) cannula inserted within the third ventricle of the brain. The i.c.v. injection of vehicle had no effect on the recorded parameters. The i.c.v. injections of ANG I and ANG II at doses of 5 and 50 pmol had a marked effect on HR and HRV. At a dose of 50 pmol, ANG I and ANG II produced a progressive and significant increase in HR (+36% and+45%, respectively) but elicited a profound decrease in HRV (-88% and-92%, respectively). I.c.v. injection of captopril (10 microg) had no effect on HR or HRV. However, this ACE inhibitor prevented the tachycardia and abolished the decrease in HRV mediated by 50 pmol of ANG I. In contrast, captopril had no effect upon the cardiac actions of 50 pmol of ANG II. These results give the first support for the existence of functional important ACE-like activity in the brain of a teleost fish and suggest that the brain RAS in this class of vertebrate may be involved in the control of cardiac chronotropic activity.
Asunto(s)
Angiotensina I/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Captopril/farmacología , Corazón/efectos de los fármacos , Angiotensina I/administración & dosificación , Animales , Interacciones Farmacológicas , Electroencefalografía , Endopeptidasas/farmacología , Análisis de Fourier , Frecuencia Cardíaca/efectos de los fármacos , Inyecciones Intraventriculares , Oncorhynchus mykiss , Estadísticas no Paramétricas , Factores de TiempoRESUMEN
This study was conducted on unanesthetized rainbow trout equipped with two ECG electrodes and with an intracerebroventricular (i.c.v.) micro-guide. The ECG signal was recorded during three experimental sessions of 30 min and the heart rate variability (HRV) spectral analysis was performed during stabilized periods of recording. The first recording session was conducted during the control period and the mean heart rate (HR) of the trout was 44+/-2 bpm. The total power spectral density (PSD) of the R-R interval signal of the ECG was 21233+/-4400 ms(2)/Hz. A major high frequency (HF) spectral band centered at 0.16 Hz and a minor low frequency (LF) spectral band centered at 0.04 Hz were the two main components of the PSD. An i.c.v. injection of 0.5 microl of vehicle during the second session had no significant statistical effect, either on the mean HR (43+/-2 bpm), the total PSD (24693+/-6394 ms(2)/Hz) or on the center frequency and power of the two main spectral bands. Conversely, an i.c.v. injection of ANGII (1.5, 6.25 and 50 pmol) during the third recording session induced a significant increase in the mean HR (+3%, +15%, +30%, respectively) but the effect of the peptide was more obvious on the total PSD which was profoundly decreased (-27%, -65%, -76%, respectively). The two main spectral bands of the PSD were totally blunted after the injection of 50 pmol of ANGII. In another group of control trout, intraperitoneal (i.p.) injection of atropine abolished the PSD of the R-R interval signal of the ECG demonstrating that the parasympathetic system is the main contributor of HRV in trout. Our results have thus demonstrated for the first time, at least in a non-mammalian species, that i.c.v. injection of native ANGII profoundly reduces HRV. We hypothesize that ANGII in the brain of the trout alters the pattern of the electrical activity along preganglionic cardiac vagal motoneurons.
Asunto(s)
Angiotensina II/farmacología , Encéfalo/fisiología , Frecuencia Cardíaca/fisiología , Oncorhynchus mykiss/fisiología , Angiotensina II/administración & dosificación , Animales , Atropina/farmacología , Electrocardiografía/efectos de los fármacos , Corazón/inervación , Inyecciones Intraperitoneales , Inyecciones Intraventriculares , Antagonistas Muscarínicos/farmacología , Nervio Vago/fisiologíaRESUMEN
Urotensin II (UII) has been originally isolated from fish urophysis. However, in fish as in mammals, UII is also produced in brain neurons. Although UII binding sites are widely distributed in the fish central nervous system (CNS), little is known regarding its central activities. In the present study, we have investigated the effects of intracerebroventricular (ICV) administration of synthetic trout UII on the duration of motor activity (ACT; evidenced by bursts of activity on the trace of the ventilatory signal), ventilatory frequency (VF), ventilatory amplitude (VA), and heart rate (HR) in unanesthesized trout, Oncorhynchus mykiss. ICV injection of very low doses of UII (1 and 5 pmol) produced a dose-dependent increase of ACT without affecting VF, VA, or HR. At a higher dose (50 pmol), UII stimulated ACT as well as VF, VA, and HR. ICV injection of trout angiotensin II (5 pmol) did not affect ACT, VF, and VA, but provoked a robust increase in HR. These data provide the first evidence that central administration of UII stimulates motor activity in a nonmammalian vertebrate.
Asunto(s)
Frecuencia Cardíaca/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Ventilación Pulmonar/efectos de los fármacos , Urotensinas/farmacología , Análisis de Varianza , Angiotensina II/farmacología , Animales , Relación Dosis-Respuesta a Droga , Electroencefalografía/métodos , Inyecciones Intraventriculares/métodos , Oncorhynchus mykiss , Urotensinas/síntesis químicaRESUMEN
The cardiovascular effects of centrally and peripherally administered synthetic salmon corticotropin-releasing-hormone (CRH), a member of a family of stress-related neuropeptides, were investigated in the unanesthetized trout, Oncorhynchus mykiss. In group 1, trout bearing a cannula in the dorsal aorta, neither intracerebroventricular (i.c.v.) nor intra-arterial (i.a.) injections of CRH produced any significant change in mean heart rate (HR) and mean dorsal aortic blood pressure. These results stand in contrast to the previously reported hypertensive effects of i.a. and i.c.v. injections of trout urotensin-I. In group 2, non-cannulated trout bearing two subcutaneous electrocardiographic electrodes, conditions that are considered to be less stressful to the animals, the baseline level of HR was significantly reduced compared to the corresponding value for cannulated trout. In these trout, no significant change occurred in the HR after i.c.v. administration of 1 pmol of CRH. However, i.c.v. injection of 5 pmol of CRH caused a 12% (P<0.01) decrease in HR during the 20-25 min post-injection period. In addition, the heart rate variability (HRV), a marker of vagal input to the heart, was increased by 120%. The CRH antagonist, CRH-(9-41)-peptide alone had no effect on HR or HRV but blocked CRH-induced bradycardia. In the non-cannulated trout, i.c.v. injection of trout urotensin-I (5 pmol) produced no significant change in HR and HRV. In contrast, i.c.v. administration of angiotensin II (5 pmol) elicited a highly significant 33% (P<0.001) increase in the mean HR as well as inducing a marked (64%) reduction in HRV. Our results suggest that picomolar doses of CRH act centrally to evoke a bradycardia by a probable mechanism that involves enhancement of the parasympathetic drive to the heart.
Asunto(s)
Bradicardia/inducido químicamente , Hormona Liberadora de Corticotropina/administración & dosificación , Oncorhynchus mykiss/fisiología , Animales , Bradicardia/fisiopatología , Hormona Liberadora de Corticotropina/toxicidad , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Inyecciones IntraventricularesRESUMEN
This study was undertaken to investigate the central actions of 5-HT on ventilatory and cardiovascular variables in the unanesthetized trout. Compared to vehicle, intracerebroventricular injection (ICV) of 5-HT elevated the total ventilation. This elevation was due to its stimulatory action on ventilatory amplitude. Moreover, 5-HT produced a dose-dependent increase in mean dorsal aortic blood pressure (PDA) without change in heart rate (fH). Methysergide, a 5-HT1/5-HT2 receptor antagonist, reduced the hyperventilatory and hypertensive actions of 5-HT. 8-OH-2-(di-n-propylamino) tetralin, a 5-HT1A receptor agonist, increased PDA while α-methyl-5-HT, a 5-HT2 receptor agonist, elevated all ventilatory variables and increased PDA without changing fH. Intra-arterial injection of 5-HT was without effect on ventilation, but 5-HT initially produced hypotension followed by hypertension. These changes were accompanied by tachycardia. It remains to be determined whether endogenous 5-HT within the brain of trout may act as a potent neuroregulator causing stimulatory effects on cardio-ventilatory functions. In the periphery, 5-HT may act as local modulator involved in vasoregulatory mechanisms.
Asunto(s)
Presión Sanguínea/efectos de los fármacos , Respiración/efectos de los fármacos , Serotoninérgicos/farmacología , Serotonina/farmacología , Análisis de Varianza , Animales , Interacciones Farmacológicas , Inyecciones Intraventriculares , TruchaRESUMEN
Gastrin-releasing peptide (GRP), a neuropeptide initially isolated from porcine stomach, shares sequence similarity with bombesin. GRP and its receptors are present in the brains and peripheral tissues of several species of teleost fish, but little is known about the ventilatory and cardiovascular effects of this peptide in these vertebrates. The goal of this study was to compare the central and peripheral actions of picomolar doses of trout GRP on ventilatory and cardiovascular variables in the unanesthetized rainbow trout. Compared to vehicle, intracerebroventricular (ICV) injection of GRP (1-50â pmol) significantly elevated the ventilation rate (ƒV) and the ventilation amplitude (VAMP), and consequently the total ventilation (VTOT). The maximum hyperventilatory effect of GRP (VTOT: +225%), observed at a dose of 50â pmol, was mostly due to its stimulatory action on VAMP (+170%) rather than ƒV (+20%). In addition, ICV GRP (50â pmol) produced a significant increase in mean dorsal aortic blood pressure (P DA) (+35%) and in heart rate (ƒH) (+25%). Intra-arterial injections of GRP (5-100â pmol) were without sustained effect on the ventilatory variables but produced sporadic and transient increases in ventilatory movement at doses of 50 and 100â pmol. At these doses, GRP elevated P DA by +20% but only the 50â pmol dose significantly increased HR (+15%). In conclusion, our study suggests that endogenous GRP within the brain of the trout may act as a potent neurotransmitter and/or neuromodulator in the regulation of cardio-ventilatory functions. In the periphery, endogenous GRP may act as locally-acting and/or circulating neurohormone with an involvement in vasoregulatory mechanisms.