Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecology ; 98(1): 5-11, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28052385

RESUMEN

Saprotrophic fungi are the primary decomposers of plant litter in temperate forests, and their activity is critical for carbon (C) and nitrogen (N) cycling. Simulated atmospheric N deposition is associated with reduced fungal biomass, shifts in fungal community structure, slowed litter decay, and soil C accumulation. Although rarely studied, N deposition may also result in novel selective pressures on fungi, affecting evolutionary trajectories. To directly test if long-term N enrichment reshapes fungal responses to N, we isolated decomposer fungi from a long-term (28 yr) N-addition experiment and used a common garden approach to compare growth rates and decay abilities of isolates from control and N-amended plots. Both growth and decay were significantly altered by long-term exposure to N enrichment. Changes in growth rates were idiosyncratic, as different species grew either more quickly or more slowly after exposure to N, but litter decay by N isolates was consistent and generally lower compared to control isolates of the same species, a response not readily reversed when N isolates were grown in control (low N) environments. Changes in fungal responses accompany and perhaps drive previously observed N-induced shifts in fungal diversity, community composition, and litter decay dynamics.


Asunto(s)
Ecosistema , Hongos/fisiología , Nitrógeno/metabolismo , Microbiología del Suelo , Hojas de la Planta/metabolismo , Suelo
2.
Sci Total Environ ; 905: 166767, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37660814

RESUMEN

Removal of recalcitrant lignin from wastewater remains a critical bottleneck in multiple aspects relating to microbial carbon cycling ranging from incomplete treatment of biosolids during wastewater treatment to limited conversion of biomass feedstock to biofuels. Based on previous studies showing that the white rot fungus Phanerochaete chrysosporium and Fenton chemistry synergistically degrade lignin, we sought to determine optimum levels of Fenton addition and the mechanisms underlying this synergy. We tested the extent of degradation of lignin under different ratios of Fenton reagents and found that relatively low levels of H2O2 and Fe(II) enhanced fungal lignin degradation, achieving 80.4 ± 1.61 % lignin degradation at 1.5 mM H2O2 and 0.3 mM Fe(II). Using a combination of whole-transcriptome sequencing and iron speciation assays, we determined that at these concentrations, Fenton chemistry induced the upregulation of 80 differentially expressed genes in P. ch including several oxidative enzymes. This study underlines the importance of non-canonical, auxiliary lignin-degrading pathways in the synergy between white rot fungi and Fenton chemistry in lignin degradation. We also found that, relative to the abiotic control, P. ch. increases the availability of Fe(II) for the production of hydroxyl radicals in the Fenton reaction by recycling Fe(III) (p < 0.001), decreasing the Fe(II) inputs necessary for lignin degradation via the Fenton reaction.


Asunto(s)
Phanerochaete , Phanerochaete/metabolismo , Lignina/metabolismo , Peróxido de Hidrógeno/metabolismo , Compuestos Férricos/metabolismo , Inducción Enzimática , Hierro/metabolismo , Compuestos Ferrosos/metabolismo
3.
mSystems ; 7(3): e0015722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35670539

RESUMEN

Despite the popularity of kombucha tea, the distribution of different microbes across kombucha ferments and how those microbes interact within communities are not well characterized. Using metagenomics, comparative genomics, synthetic community experiments, and metabolomics, we determined the taxonomic, ecological, and functional diversity of 23 distinct kombuchas from across the United States. Shotgun metagenomic sequencing demonstrated that the bacterium Komagataeibacter rhaeticus and the yeast Brettanomyces bruxellensis were the most common microbes in the sampled kombucha communities. To determine the specificity of bacterium-yeast interactions, we experimentally quantified microbial interactions within kombucha biofilms by measuring densities of interacting species and biofilm production. In pairwise combinations of bacteria and yeast, B. bruxellensis and individual strains of Komagataeibacter spp. were sufficient to form kombucha fermentations with robust biofilms, but Zygosaccharomyces bisporus, another yeast found in kombucha, did not stimulate bacteria to produce biofilms. Profiling the spent media of both yeast species using nuclear magnetic resonance spectroscopy suggested that the enhanced ability of B. bruxellensis to ferment and produce key metabolites in sucrose-sweetened tea may explain why it stimulates biofilm formation. Comparative genomics demonstrated that Komagataeibacter spp. with >99% genomic similarity can still have dramatic differences in biofilm production, with strong producers yielding five times more biofilm than the weakest producers. IMPORTANCE Through an integration of metagenomic and experimental approaches, our work reveals the diversity and nature of interactions among key taxa in kombucha microbiomes through the construction of synthetic microbial pairs. Manipulation of these microbes in kombucha has the potential to shape both the fermentation qualities of kombucha and the production of biofilms and is valuable for kombucha beverage producers, biofilm engineers, and synthetic ecologists.


Asunto(s)
Té de Kombucha , Té de Kombucha/análisis , Fermentación , Bebidas/microbiología , Bacterias/genética , Metagenoma
4.
Elife ; 102021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33496265

RESUMEN

Humans have relied on sourdough starter microbial communities to make leavened bread for thousands of years, but only a small fraction of global sourdough biodiversity has been characterized. Working with a community-scientist network of bread bakers, we determined the microbial diversity of 500 sourdough starters from four continents. In sharp contrast with widespread assumptions, we found little evidence for biogeographic patterns in starter communities. Strong co-occurrence patterns observed in situ and recreated in vitro demonstrate that microbial interactions shape sourdough community structure. Variation in dough rise rates and aromas were largely explained by acetic acid bacteria, a mostly overlooked group of sourdough microbes. Our study reveals the extent of microbial diversity in an ancient fermented food across diverse cultural and geographic backgrounds.


Sourdough bread is an ancient fermented food that has sustained humans around the world for thousands of years. It is made from a sourdough 'starter culture' which is maintained, portioned, and shared among bread bakers around the world. The starter culture contains a community of microbes made up of yeasts and bacteria, which ferment the carbohydrates in flour and produce the carbon dioxide gas that makes the bread dough rise before baking. The different acids and enzymes produced by the microbial culture affect the bread's flavor, texture and shelf life. However, for such a dependable staple, sourdough bread cultures and the mixture of microbes they contain have scarcely been characterized. Previous studies have looked at the composition of starter cultures from regions within Europe. But there has never been a comprehensive study of how the microbial diversity of sourdough starters varies across and between continents. To investigate this, Landis, Oliverio et al. used genetic sequencing to characterize the microbial communities of sourdough starters from the homes of 500 bread bakers in North America, Europe and Australasia. Bread makers often think their bread's unique qualities are due to the local environment of where the sourdough starter was made. However, Landis, Oliverio et al. found that geographical location did not correlate with the diversity of the starter cultures studied. The data revealed that a group of microbes called acetic acid bacteria, which had been overlooked in past research, were relatively common in starter cultures. Moreover, starters with a greater abundance of this group of bacteria produced bread with a strong vinegar aroma and caused dough to rise at a slower rate. This research demonstrates which species of bacteria and yeast are most commonly found in sourdough starters, and suggests geographical location has little influence on the microbial diversity of these cultures. Instead, the diversity of microbes likely depends more on how the starter culture was made and how it is maintained over time.


Asunto(s)
Bacterias/metabolismo , Pan/microbiología , Microbiología de Alimentos , Microbiota , Ácido Acético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA