Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(3): 647-58, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25083874

RESUMEN

ClpXP and other AAA+ proteases recognize, mechanically unfold, and translocate target proteins into a chamber for proteolysis. It is not known whether these remarkable molecular machines operate by a stochastic or sequential mechanism or how power strokes relate to the ATP-hydrolysis cycle. Single-molecule optical trapping allows ClpXP unfolding to be directly visualized and reveals translocation steps of ∼1-4 nm in length, but how these activities relate to solution degradation and the physical properties of substrate proteins remains unclear. By studying single-molecule degradation using different multidomain substrates and ClpXP variants, we answer many of these questions and provide evidence for stochastic unfolding and translocation. We also present a mechanochemical model that accounts for single-molecule, biochemical, and structural results for our observation of enzymatic memory in translocation stepping, for the kinetics of translocation steps of different sizes, and for probabilistic but highly coordinated subunit activity within the ClpX ring.


Asunto(s)
Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Estructura Terciaria de Proteína , Desplegamiento Proteico , Proteolisis
2.
Nature ; 613(7944): 565-574, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410718

RESUMEN

Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific ß chain, is a critical early checkpoint in thymocyte development within the αß T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αß T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αß T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting ß chain repertoire broadening for subsequent αß T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.


Asunto(s)
Desdiferenciación Celular , Antígenos de Histocompatibilidad Clase I , Receptores de Antígenos de Linfocitos T , Timocitos , Animales , Ratones , Ratones Noqueados , Simulación del Acoplamiento Molecular , Péptidos/inmunología , Péptidos/metabolismo , Timocitos/citología , Timocitos/inmunología , Timo/citología , Timo/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo
3.
Immunity ; 49(5): 829-841.e6, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30389415

RESUMEN

Initial molecular details of cellular activation following αßT cell antigen receptor (TCR) ligation by peptide-major histocompatibility complexes (pMHC) remain unexplored. We determined the nuclear magnetic resonance (NMR) structure of the TCRα subunit transmembrane (TM) domain revealing a bipartite helix whose segmentation fosters dynamic movement. Positively charged TM residues Arg251 and Lys256 project from opposite faces of the helix, with Lys256 controlling immersion depth. Their modification caused stepwise reduction in TCR associations with CD3ζζ homodimers and CD3εγ plus CD3εδ heterodimers, respectively, leading to an activated transcriptome. Optical tweezers revealed that Arg251 and Lys256 mutations altered αßTCR-pMHC bond lifetimes, while mutations within interacting TCRα connecting peptide and CD3δ CxxC motif juxtamembrane elements selectively attenuated signal transduction. Our findings suggest that mechanical forces applied during pMHC ligation initiate T cell activation via a dissociative mechanism, shifting disposition of those basic sidechains to rearrange TCR complex membrane topology and weaken TCRαß and CD3 associations.


Asunto(s)
Complejo CD3/metabolismo , Membrana Celular/metabolismo , Dominios Proteicos , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Secuencia de Aminoácidos , Biomarcadores , Complejo CD3/química , Secuencia Conservada , Perfilación de la Expresión Génica , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Transducción de Señal , Transcriptoma
4.
Cell ; 145(2): 257-67, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21496645

RESUMEN

All cells employ ATP-powered proteases for protein-quality control and regulation. In the ClpXP protease, ClpX is a AAA+ machine that recognizes specific protein substrates, unfolds these molecules, and then translocates the denatured polypeptide through a central pore and into ClpP for degradation. Here, we use optical-trapping nanometry to probe the mechanics of enzymatic unfolding and translocation of single molecules of a multidomain substrate. Our experiments demonstrate the capacity of ClpXP and ClpX to perform mechanical work under load, reveal very fast and highly cooperative unfolding of individual substrate domains, suggest a translocation step size of 5-8 amino acids, and support a power-stroke model of denaturation in which successful enzyme-mediated unfolding of stable domains requires coincidence between mechanical pulling by the enzyme and a transient stochastic reduction in protein stability. We anticipate that single-molecule studies of the mechanical properties of other AAA+ proteolytic machines will reveal many shared features with ClpXP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Endopeptidasa Clp/química , Desplegamiento Proteico , Endopeptidasa Clp/metabolismo , Escherichia coli/enzimología , Humanos , Transporte de Proteínas
5.
Proc Natl Acad Sci U S A ; 120(27): e2215694120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37339184

RESUMEN

T cell receptors (TCR) on cytolytic T lymphocytes (CTLs) recognize "foreign" antigens bound in the groove of major histocompatibility complex (MHC) molecules (H-2 in mouse and HLA in human) displayed on altered cells. These antigens are peptide fragments of proteins derived either from infectious pathogens or cellular transformations during cancer evolution. The conjoint ligand formed by the foreign peptide and MHC, termed pMHC, marks an aberrant cell as a target for CTL-mediated destruction. Recent data have provided compelling evidence that adaptive protection is achieved in a facile manner during immune surveillance when mechanical load consequent to cellular motion is applied to the bond formed between an αß TCR and its pMHC ligand arrayed on a disease-altered cell. Mechanobiology maximizes both TCR specificity and sensitivity in comparison to receptor ligation in the absence of force. While the field of immunotherapy has made advances to impact the survival of cancer patients, the latest information relevant to T cell targeting and mechanotransduction has yet to be applied for T cell monitoring and treatment of patients in the clinic. Here we review these data, and challenge scientists and physicians to apply critical biophysical parameters of TCR mechanobiology to the medical oncology field, broadening treatment success within and among various cancer types. We assert that TCRs with digital ligand-sensing performance capability directed at sparsely as well as luminously displayed tumor-specific neoantigens and certain tumor-associated antigens can improve effective cancer vaccine development and immunotherapy paradigms.


Asunto(s)
Mecanotransducción Celular , Neoplasias , Humanos , Ratones , Animales , Ligandos , Receptores de Antígenos de Linfocitos T , Antígenos de Histocompatibilidad , Neoplasias/terapia , Antígenos de Neoplasias , Oncología Médica , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(40): e2122770119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161928

RESUMEN

Cellulose biosynthesis in sessile bacterial colonies originates in the membrane-integrated bacterial cellulose synthase (Bcs) AB complex. We utilize optical tweezers to measure single-strand cellulose biosynthesis by BcsAB from Rhodobacter sphaeroides. Synthesis depends on uridine diphosphate glucose, Mg2+, and cyclic diguanosine monophosphate, with the last displaying a retention time of ∼80 min. Below a stall force of 12.7 pN, biosynthesis is relatively insensitive to force and proceeds at a rate of one glucose addition every 2.5 s at room temperature, increasing to two additions per second at 37°. At low forces, conformational hopping is observed. Single-strand cellulose stretching unveiled a persistence length of 6.2 nm, an axial stiffness of 40.7 pN, and an ability for complexes to maintain a tight grip, with forces nearing 100 pN. Stretching experiments exhibited hysteresis, suggesting that cellulose microstructure underpinning robust biofilms begins to form during synthesis. Cellohexaose spontaneously binds to nascent single cellulose strands, impacting polymer mechanical properties and increasing BcsAB activity.


Asunto(s)
Rhodobacter sphaeroides , Uridina Difosfato Glucosa , Metabolismo de los Hidratos de Carbono , Celulosa/metabolismo , Glucosa/metabolismo , Rhodobacter sphaeroides/metabolismo , Uridina Difosfato Glucosa/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34172580

RESUMEN

High-acuity αßT cell receptor (TCR) recognition of peptides bound to major histocompatibility complex molecules (pMHCs) requires mechanosensing, a process whereby piconewton (pN) bioforces exert physical load on αßTCR-pMHC bonds to dynamically alter their lifetimes and foster digital sensitivity cellular signaling. While mechanotransduction is operative for both αßTCRs and pre-TCRs within the αßT lineage, its role in γδT cells is unknown. Here, we show that the human DP10.7 γδTCR specific for the sulfoglycolipid sulfatide bound to CD1d only sustains a significant load and undergoes force-induced structural transitions when the binding interface-distal γδ constant domain (C) module is replaced with that of αß. The chimeric γδ-αßTCR also signals more robustly than does the wild-type (WT) γδTCR, as revealed by RNA-sequencing (RNA-seq) analysis of TCR-transduced Rag2-/- thymocytes, consistent with structural, single-molecule, and molecular dynamics studies reflective of γδTCRs as mediating recognition via a more canonical immunoglobulin-like receptor interaction. Absence of robust, force-related catch bonds, as well as γδTCR structural transitions, implies that γδT cells do not use mechanosensing for ligand recognition. This distinction is consonant with the fact that their innate-type ligands, including markers of cellular stress, are expressed at a high copy number relative to the sparse pMHC ligands of αßT cells arrayed on activating target cells. We posit that mechanosensing emerged over ∼200 million years of vertebrate evolution to fulfill indispensable adaptive immune recognition requirements for pMHC in the αßT cell lineage that are unnecessary for the γδT cell lineage mechanism of non-pMHC ligand detection.


Asunto(s)
Mecanotransducción Celular , Receptores de Antígenos de Linfocitos T gamma-delta/química , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Secuencia de Aminoácidos , Animales , Perfilación de la Expresión Génica , Humanos , Ligandos , Ratones , Dominios Proteicos , Estabilidad Proteica , Estructura Secundaria de Proteína , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Transducción de Señal , Imagen Individual de Molécula , Linfocitos T/metabolismo , Timocitos/metabolismo , Timo/metabolismo , Transcriptoma/genética
8.
Proc Natl Acad Sci U S A ; 117(35): 21336-21345, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32796106

RESUMEN

Each [Formula: see text]T cell receptor (TCR) functions as a mechanosensor. The TCR is comprised of a clonotypic TCR[Formula: see text] ligand-binding heterodimer and the noncovalently associated CD3 signaling subunits. When bound by ligand, an antigenic peptide arrayed by a major histocompatibility complex molecule (pMHC), the TCR[Formula: see text] has a longer bond lifetime under piconewton-level loads. The atomistic mechanism of this "catch bond" behavior is unknown. Here, we perform molecular dynamics simulation of a TCR[Formula: see text]-pMHC complex and its variants under physiologic loads to identify this mechanism and any attendant TCR[Formula: see text] domain allostery. The TCR[Formula: see text]-pMHC interface is dynamically maintained by contacts with a spectrum of occupancies, introducing a level of control via relative motion between Vα and Vß variable domains containing the pMHC-binding complementarity-determining region (CDR) loops. Without adequate load, the interfacial contacts are unstable, whereas applying sufficient load suppresses Vα-Vß motion, stabilizing the interface. A second level of control is exerted by Cα and Cß constant domains, especially Cß and its protruding FG-loop, that create mismatching interfaces among the four TCR[Formula: see text] domains and with a pMHC ligand. Applied load enhances fit through deformation of the TCR[Formula: see text] molecule. Thus, the catch bond involves the entire TCR[Formula: see text] conformation, interdomain motion, and interfacial contact dynamics, collectively. This multilayered architecture of the machinery fosters fine-tuning of cellular response to load and pMHC recognition. Since the germline-derived TCR[Formula: see text] ectodomain is structurally conserved, the proposed mechanism can be universally adopted to operate under load during immune surveillance by diverse [Formula: see text]TCRs constituting the T cell repertoire.


Asunto(s)
Complejo Mayor de Histocompatibilidad , Simulación de Dinámica Molecular , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Humanos , Ligandos , Mecanotransducción Celular , Linfocitos T/metabolismo
9.
J Biol Chem ; 296: 100431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33610545

RESUMEN

Efficient enzymatic saccharification of cellulosic biomass into fermentable sugars can enable production of bioproducts like ethanol. Native crystalline cellulose, or cellulose I, is inefficiently processed via enzymatic hydrolysis but can be converted into the structurally distinct cellulose III allomorph that is processed via cellulase cocktails derived from Trichoderma reesei up to 20-fold faster. However, characterization of individual cellulases from T. reesei, like the processive exocellulase Cel7A, shows reduced binding and activity at low enzyme loadings toward cellulose III. To clarify this discrepancy, we monitored the single-molecule initial binding commitment and subsequent processive motility of Cel7A enzymes and associated carbohydrate-binding modules (CBMs) on cellulose using optical tweezers force spectroscopy. We confirmed a 48% lower initial binding commitment and 32% slower processive motility of Cel7A on cellulose III, which we hypothesized derives from reduced binding affinity of the Cel7A binding domain CBM1. Classical CBM-cellulose pull-down assays, depending on the adsorption model fitted, predicted between 1.2- and 7-fold reduction in CBM1 binding affinity for cellulose III. Force spectroscopy measurements of CBM1-cellulose interactions, along with molecular dynamics simulations, indicated that previous interpretations of classical binding assay results using multisite adsorption models may have complicated analysis, and instead suggest simpler single-site models should be used. These findings were corroborated by binding analysis of other type-A CBMs (CBM2a, CBM3a, CBM5, CBM10, and CBM64) on both cellulose allomorphs. Finally, we discuss how complementary analytical tools are critical to gain insight into the complex mechanisms of insoluble polysaccharides hydrolysis by cellulolytic enzymes and associated carbohydrate-binding proteins.


Asunto(s)
Celulasas/metabolismo , Celulosa/metabolismo , Hypocreales/enzimología , Adsorción , Proteínas Portadoras/metabolismo , Dominio Catalítico , Celulasa/química , Celulasas/química , Celulosa 1,4-beta-Celobiosidasa/química , Hidrólisis , Hypocreales/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Trichoderma/enzimología
10.
Proc Natl Acad Sci U S A ; 116(13): 6152-6161, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850543

RESUMEN

Kinesin motor proteins that drive intracellular transport share an overall architecture of two motor domain-containing subunits that dimerize through a coiled-coil stalk. Dimerization allows kinesins to be processive motors, taking many steps along the microtubule track before detaching. However, whether dimerization is required for intracellular transport remains unknown. Here, we address this issue using a combination of in vitro and cellular assays to directly compare dimeric motors across the kinesin-1, -2, and -3 families to their minimal monomeric forms. Surprisingly, we find that monomeric motors are able to work in teams to drive peroxisome dispersion in cells. However, peroxisome transport requires minimal force output, and we find that most monomeric motors are unable to disperse the Golgi complex, a high-load cargo. Strikingly, monomeric versions of the kinesin-2 family motors KIF3A and KIF3B are able to drive Golgi dispersion in cells, and teams of monomeric KIF3B motors can generate over 8 pN of force in an optical trap. We find that intracellular transport and force output by monomeric motors, but not dimeric motors, are significantly decreased by the addition of longer and more flexible motor-to-cargo linkers. Together, these results suggest that dimerization of kinesin motors is not required for intracellular transport; however, it enables motor-to-motor coordination and high force generation regardless of motor-to-cargo distance. Dimerization of kinesin motors is thus critical for cellular events that require an ability to generate or withstand high forces.


Asunto(s)
Cinesinas/metabolismo , Animales , Transporte Biológico , Células COS , Chlorocebus aethiops , Dimerización , Aparato de Golgi/metabolismo , Peroxisomas/metabolismo
11.
Trends Immunol ; 39(8): 596-609, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30060805

RESUMEN

T lymphocytes use αß T cell receptors (TCRs) to recognize sparse antigenic peptides bound to MHC molecules (pMHCs) arrayed on antigen-presenting cells (APCs). Contrary to conventional receptor-ligand associations exemplified by antigen-antibody interactions, forces play a crucial role in nonequilibrium mechanosensor-based T cell activation. Both T cell motility and local cytoskeleton machinery exert forces (i.e., generate loads) on TCR-pMHC bonds. We review biological features of the load-dependent activation process as revealed by optical tweezers single molecule/single cell and other biophysical measurements. The findings link pMHC-triggered TCRs to single cytoskeletal motors; define the importance of energized anisotropic (i.e., force direction dependent) activation; and characterize immunological synapse formation as digital, revealing no serial requirement. The emerging picture suggests new approaches for the monitoring and design of cytotoxic T lymphocyte (CTL)-based immunotherapy.


Asunto(s)
Citoesqueleto/metabolismo , Inmunoterapia Adoptiva/métodos , Mecanotransducción Celular , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T/fisiología , Animales , Anisotropía , Presentación de Antígeno , Antígenos/metabolismo , Antígenos de Histocompatibilidad/metabolismo , Humanos , Péptidos/metabolismo , Análisis de la Célula Individual
12.
Proc Natl Acad Sci U S A ; 114(39): E8204-E8213, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28811364

RESUMEN

T lymphocytes use surface [Formula: see text] T-cell receptors (TCRs) to recognize peptides bound to MHC molecules (pMHCs) on antigen-presenting cells (APCs). How the exquisite specificity of high-avidity T cells is achieved is unknown but essential, given the paucity of foreign pMHC ligands relative to the ubiquitous self-pMHC array on an APC. Using optical traps, we determine physicochemical triggering thresholds based on load and force direction. Strikingly, chemical thresholds in the absence of external load require orders of magnitude higher pMHC numbers than observed physiologically. In contrast, force applied in the shear direction ([Formula: see text]10 pN per TCR molecule) triggers T-cell Ca2+ flux with as few as two pMHC molecules at the interacting surface interface with rapid positional relaxation associated with similarly directed motor-dependent transport via [Formula: see text]8-nm steps, behaviors inconsistent with serial engagement during initial TCR triggering. These synergistic directional forces generated during cell motility are essential for adaptive T-cell immunity against infectious pathogens and cancers.


Asunto(s)
Presentación de Antígeno/inmunología , Activación de Linfocitos/inmunología , Mecanotransducción Celular/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Antígenos/inmunología , Línea Celular , Ratones , Ratones Noqueados , Pinzas Ópticas
13.
J Biol Chem ; 293(3): 754-766, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29101227

RESUMEN

The pre-T cell receptor (pre-TCR) guides early thymocytes through maturation processes within the thymus via interaction with self-ligands displayed on thymic epithelial cells. The pre-TCR is a disulfide-linked heterodimer composed of an invariant pre-TCR α (pTα) subunit and a variable ß subunit, the latter of which is incorporated into the mature TCR in subsequent developmental progression. This interaction of pre-TCR with peptide-major histocompatibility complex (pMHC) molecules has recently been shown to drive robust pre-TCR signaling and thymocyte maturation. Although the native sequences of ß are properly folded and suitable for NMR studies in isolation, a tendency to self-associate rendered binding studies with physiological ligands difficult to interpret. Consequently, to structurally define this critical interaction, we have re-engineered the extracellular regions of ß, designated as ß-c1, for prokaryotic production to be used in NMR spectroscopy. Given the large size of the full extracellular domain of class I MHC molecules such as H-Kb, we produced a truncated form termed Kb-t harboring properties favorable for NMR measurements. This system has enabled robust measurement of a pre-TCR-pMHC interaction directly analogous to that of TCRαß-pMHC. Binding surface analysis identified a contact surface comparable in size to that of the TCRαß-pMHC but potentially with a rather distinct binding orientation. A tilting of the pre-TCRß when bound to the pMHC ligand recognition surface versus the upright orientation of TCRαß would alter the direction of force application between pre-TCR and TCR mechanosensors, impacting signal initiation.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Glicoproteínas de Membrana/química , Receptores de Antígenos de Linfocitos T alfa-beta/química , Complejo Mayor de Histocompatibilidad/genética , Complejo Mayor de Histocompatibilidad/fisiología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutagénesis , Unión Proteica , Pliegue de Proteína , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo
14.
J Biomol NMR ; 73(6-7): 319-332, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30815789

RESUMEN

Early studies of T cell structural biology using X-ray crystallography, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) focused on a picture of the αßT cell receptor (αßTCR) component domains and their cognate ligands (peptides bound to MHC molecules, i.e. pMHCs) as static interaction partners. Moving forward requires integrating this corpus of data with dynamic technologies such as NMR, molecular dynamics (MD) simulations and real-time single molecule (SM) studies exemplified by optical tweezers (OT). NMR bridges relevant timescales and provides the potential for an all-atom dynamic description of αßTCR components prior to and during interactions with binding partners. SM techniques have opened up vistas in understanding the non-equilibrium nature of T cell signaling through the introduction of force-mediated binding measurements into the paradigm for T cell function. In this regard, bioforces consequent to T-lineage cell motility are now perceived as placing piconewton (pN)-level loads on single receptor-pMHC bonds to impact structural change and αßT-lineage biology, including peptide discrimination, cellular activation, and developmental progression. We discuss herein essential NMR technologies in illuminating the role of ligand binding in the preT cell receptor (preTCR), the αßTCR developmental precursor, and convergence of NMR, SM and MD data in advancing our comprehension of T cell development. More broadly we review the central hypothesis that the αßTCR is a mechanosensor, fostered by breakthrough NMR-based structural insights. Collectively, elucidating dynamic aspects through the integrative use of NMR, SM, and MD shall advance fundamental appreciation of the mechanism of T cell signaling as well as inform translational efforts in αßTCR and chimeric T cell (CAR-T) immunotherapies and T cell vaccinology.


Asunto(s)
Antígenos de Histocompatibilidad/química , Resonancia Magnética Nuclear Biomolecular , Receptores de Antígenos de Linfocitos T/química , Antígenos de Histocompatibilidad/metabolismo , Humanos , Ligandos , Mecanotransducción Celular , Modelos Moleculares , Conformación Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Relación Estructura-Actividad , Linfocitos T/inmunología , Linfocitos T/metabolismo
15.
Health Econ ; 28(1): 44-56, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30230125

RESUMEN

We provide evidence that average mental, physical, and general health worsens for employed workers in local U.S. labor markets exposed to greater import competition from China. The effects are greatest for mental health. Moving a region from the 25th to 75th percentiles of import exposure corresponds to a 7.8% increase in the morbidity of poor mental health, adding about 3 days of poor mental health per year for the average adult. Concurrently, the ability to afford health care decreases. Our results complement documented consequences of import competition on labor markets and temporary business cycle shocks on health outcomes.


Asunto(s)
Comercio , Competencia Económica , Empleo/estadística & datos numéricos , Salud Mental , Estrés Psicológico/psicología , Sistema de Vigilancia de Factor de Riesgo Conductual , China , Empleo/tendencias , Humanos , Industria Manufacturera , Modelos Económicos , Estados Unidos
16.
Angew Chem Int Ed Engl ; 58(21): 7073-7077, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-30916461

RESUMEN

Charge transfer and separation are important processes governing numerous chemical reactions. Fundamental understanding of these processes and the underlying mechanisms is critical for photochemistry. Herein, we report the discovery of a new charge-transfer and separation process, namely the twisted intramolecular charge shuttle (TICS). In TICS systems, the donor and acceptor moieties dynamically switch roles in the excited state because of an approximately 90° intramolecular rotation. TICS systems thus exhibit charge shuttling. TICSs exist in several chemical families of fluorophores (such as coumarin, BODIPY, and oxygen/carbon/silicon-rhodamine), and could be utilized to construct functional fluorescent probes (i.e., viscosity- or biomolecule-sensing probes). The discovery of the TICS process expands the current perspectives of charge-transfer processes and will inspire future applications.

17.
Proc Natl Acad Sci U S A ; 112(29): E3826-35, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26150501

RESUMEN

Kinesin-8s are plus-end-directed motors that negatively regulate microtubule (MT) length. Well-characterized members of this subfamily (Kip3, Kif18A) exhibit two important properties: (i) They are "ultraprocessive," a feature enabled by a second MT-binding site that tethers the motors to a MT track, and (ii) they dissociate infrequently from the plus end. Together, these characteristics combined with their plus-end motility cause Kip3 and Kif18A to enrich preferentially at the plus ends of long MTs, promoting MT catastrophes or pausing. Kif18B, an understudied human kinesin-8, also limits MT growth during mitosis. In contrast to Kif18A and Kip3, localization of Kif18B to plus ends relies on binding to the plus-end tracking protein EB1, making the relationship between its potential plus-end-directed motility and plus-end accumulation unclear. Using single-molecule assays, we show that Kif18B is only modestly processive and that the motor switches frequently between directed and diffusive modes of motility. Diffusion is promoted by the tail domain, which also contains a second MT-binding site that decreases the off rate of the motor from the MT lattice. In cells, Kif18B concentrates at the extreme tip of a subset of MTs, superseding EB1. Our data demonstrate that kinesin-8 motors use diverse design principles to target MT plus ends, which likely target them to the plus ends of distinct MT subpopulations in the mitotic spindle.


Asunto(s)
Fenómenos Biofísicos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Movimiento (Física) , Rastreo Celular , Difusión , Células HeLa , Humanos , Cinesinas/química , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Grabación en Video
18.
Proc Natl Acad Sci U S A ; 112(5): 1517-22, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605925

RESUMEN

The αß T-cell receptor (TCR) on each T lymphocyte mediates exquisite specificity for a particular foreign peptide bound to a major histocompatibility complex molecule (pMHC) displayed on the surface of altered cells. This recognition stimulates protection in the mammalian host against intracellular pathogens, including viruses, and involves piconewton forces that accompany pMHC ligation. Physical forces are generated by T-lymphocyte movement during immune surveillance as well as by cytoskeletal rearrangements at the immunological synapse following cessation of cell migration. The mechanistic explanation for how TCRs distinguish between foreign and self-peptides bound to a given MHC molecule is unclear: peptide residues themselves comprise few of the TCR contacts on the pMHC, and pathogen-derived peptides are scant among myriad self-peptides bound to the same MHC class arrayed on infected cells. Using optical tweezers and DNA tether spacer technology that permit piconewton force application and nanometer scale precision, we have determined how bioforces relate to self versus nonself discrimination. Single-molecule analyses involving isolated αß-heterodimers as well as complete TCR complexes on T lymphocytes reveal that the FG loop in the ß-subunit constant domain allosterically controls both the variable domain module's catch bond lifetime and peptide discrimination via force-driven conformational transition. In contrast to integrins, the TCR interrogates its ligand via a strong force-loaded state with release through a weakened, extended state. Our work defines a key element of TCR mechanotransduction, explaining why the FG loop structure evolved for adaptive immunity in αß but not γδTCRs or immunoglobulins.


Asunto(s)
Complejo Mayor de Histocompatibilidad , Péptidos/química , Receptores de Antígenos de Linfocitos T alfa-beta/química , Secuencia de Aminoácidos , Modelos Moleculares , Pinzas Ópticas , Homología de Secuencia de Aminoácido
19.
J Biol Chem ; 291(49): 25292-25305, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27707880

RESUMEN

The pre-T cell receptor (pre-TCR) is a pTα-ß heterodimer functioning in early αß T cell development. Although once thought to be ligand-autonomous, recent studies show that pre-TCRs participate in thymic repertoire formation through recognition of peptides bound to major histocompatibility molecules (pMHC). Using optical tweezers, we probe pre-TCR bonding with pMHC at the single molecule level. Like the αßTCR, the pre-TCR is a mechanosensor undergoing force-based structural transitions that dynamically enhance bond lifetimes and exploiting allosteric control regulated via the Cß FG loop region. The pre-TCR structural transitions exhibit greater reversibility than TCRαß and ordered force-bond lifetime curves. Higher piconewton force requires binding through both complementarity determining region loops and hydrophobic Vß patch apposition. This patch functions in the pre-TCR as a surrogate Vα domain, fostering ligand promiscuity to favor development of ß chains with self-reactivity but is occluded by α subunit replacement of pTα upon αßTCR formation. At the double negative 3 thymocyte stage where the pre-TCR is first expressed, pre-TCR interaction with self-pMHC ligands imparts growth and survival advantages as revealed in thymic stromal cultures, imprinting fundamental self-reactivity in the T cell repertoire. Collectively, our data imply the existence of sequential mechanosensor αßTCR repertoire tuning via the pre-TCR.


Asunto(s)
Regiones Determinantes de Complementariedad , Regulación de la Expresión Génica/fisiología , Receptores de Antígenos de Linfocitos T alfa-beta , Timocitos , Animales , Regiones Determinantes de Complementariedad/biosíntesis , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Ratones , Ratones Noqueados , Estructura Secundaria de Proteína , Receptores de Antígenos de Linfocitos T alfa-beta/biosíntesis , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Timocitos/química , Timocitos/citología , Timocitos/metabolismo
20.
Chemistry ; 23(36): 8736-8740, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28481024

RESUMEN

Fluorophores with near-infrared emissions play a crucial role in numerous bioimaging and biosensing applications, owing to their deep penetration depths, low auto-fluorescence, and minimal tissue damages. Herein, the rational development of a new class of near-infrared fluorophores with bright one-photon and two-photon emissions at ≈740 nm, large Stokes shifts (≈80 nm), significant two-photon action absorption cross-section (≈185 GM at 820 nm), excellent water solubility, outstanding photostability, and low toxicity is reported. Their biological applications in mitochondrial labelling, deep tissue imaging, and H2 S detection in live cells and mice are also demonstrated. In addition, a rational design strategy for enlarging the Stokes shifts and enhancing two-photon emissions of these fluorophores is presented. These fluorophores will serve as a useful platform for developing novel imaging and sensing agents, and the design methodologies will inspire the molecular engineering of abundant high-performance near-infrared fluorophores.


Asunto(s)
Benzopiranos/química , Colorantes Fluorescentes/química , Sulfuro de Hidrógeno/análisis , Animales , Benzopiranos/síntesis química , Técnicas Biosensibles , Línea Celular , Colorantes Fluorescentes/síntesis química , Humanos , Ratones Desnudos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Mitocondrias/metabolismo , Imagen Óptica/métodos , Fotones , Solubilidad , Espectroscopía Infrarroja Corta/métodos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA