Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 286(1898): 20182877, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30862289

RESUMEN

Collapses and regime changes are pervasive in complex systems (such as marine ecosystems) governed by multiple stressors. The demise of Atlantic cod ( Gadus morhua) stocks constitutes a text book example of the consequences of overexploiting marine living resources, yet the drivers of these nearly synchronous collapses are still debated. Moreover, it is still unclear why rebuilding of collapsed fish stocks such as cod is often slow or absent. Here, we apply the stochastic cusp model, based on catastrophe theory, and show that collapse and recovery of cod stocks are potentially driven by the specific interaction between exploitation pressure and environmental drivers. Our statistical modelling study demonstrates that for most of the cod stocks, ocean warming could induce a nonlinear discontinuous relationship between fishing pressure and stock size, which would explain hysteresis in their response to reduced exploitation pressure. Our study suggests further that a continuing increase in ocean temperatures will probably limit productivity and hence future fishing opportunities for most cod stocks of the Atlantic Ocean. Moreover, our study contributes to the ongoing discussion on the importance of climate and fishing effects on commercially exploited fish stocks, highlighting the importance of considering discontinuous dynamics in holistic ecosystem-based management approaches, particularly under climate change.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Gadus morhua/fisiología , Calentamiento Global , Temperatura , Animales , Océano Atlántico , Modelos Biológicos , Dinámica Poblacional , Agua de Mar/química , Procesos Estocásticos
2.
Glob Chang Biol ; 23(12): 5318-5330, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28657128

RESUMEN

Light is a central driver of biological processes and systems. Receding sea ice changes the lightscape of high-latitude oceans and more light will penetrate into the sea. This affects bottom-up control through primary productivity and top-down control through vision-based foraging. We model effects of sea-ice shading on visual search to develop a mechanistic understanding of how climate-driven sea-ice retreat affects predator-prey interactions. We adapt a prey encounter model for ice-covered waters, where prey-detection performance of planktivorous fish depends on the light cycle. We use hindcast sea-ice concentrations (past 35 years) and compare with a future no-ice scenario to project visual range along two south-north transects with different sea-ice distributions and seasonality, one through the Bering Sea and one through the Barents Sea. The transect approach captures the transition from sub-Arctic to Arctic ecosystems and allows for comparison of latitudinal differences between longitudes. We find that past sea-ice retreat has increased visual search at a rate of 2.7% to 4.2% per decade from the long-term mean; and for high latitudes, we predict a 16-fold increase in clearance rate. Top-down control is therefore predicted to intensify. Ecological and evolutionary consequences for polar marine communities and energy flows would follow, possibly also as tipping points and regime shifts. We expect species distributions to track the receding ice-edge, and in particular expect species with large migratory capacity to make foraging forays into high-latitude oceans. However, the extreme seasonality in photoperiod of high-latitude oceans may counteract such shifts and rather act as a zoogeographical filter limiting poleward range expansion. The provided mechanistic insights are relevant for pelagic ecosystems globally, including lakes where shifted distributions are seldom possible but where predator-prey consequences would be much related. As part of the discussion on photoperiodic implications for high-latitude range shifts, we provide a short review of studies linking physical drivers to latitudinal extent.


Asunto(s)
Ecosistema , Conducta Alimentaria , Peces/fisiología , Cubierta de Hielo , Océanos y Mares , Animales , Regiones Árticas , Ecología , Lagos , Modelos Biológicos , Luz Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA