Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(47): 18904-9, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24167255

RESUMEN

Precise and efficient mapping of epigenetic markers on DNA may become an important clinical tool for prediction and identification of ailments. Methylated CpG sites are involved in gene expression and are biomarkers for diseases such as cancer. Here, we use the engineered biological protein pore Mycobacterium smegmatis porin A (MspA) to detect and map 5-methylcytosine and 5-hydroxymethylcytosine within single strands of DNA. In this unique single-molecule tool, a phi29 DNA polymerase draws ssDNA through the pore in single-nucleotide steps, and the ion current through the pore is recorded. Comparing current levels generated with DNA containing methylated CpG sites to current levels obtained with unmethylated copies of the DNA reveals the precise location of methylated CpG sites. Hydroxymethylation is distinct from methylation and can also be mapped. With a single read, the detection efficiency in a quasirandom DNA strand is 97.5 ± 0.7% for methylation and 97 ± 0.9% for hydroxymethylation.


Asunto(s)
5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Metilación de ADN , Modelos Moleculares , Nanoporos , Porinas/metabolismo , 5-Metilcitosina/aislamiento & purificación , Teorema de Bayes , Citosina/aislamiento & purificación , Citosina/metabolismo , Epigenómica/métodos , Estructura Molecular
2.
J Lipid Res ; 52(2): 272-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21076119

RESUMEN

The cell wall of mycobacteria includes a thick, robust, and highly impermeable outer membrane made from long-chain mycolic acids. These outer membranes form a primary layer of protection for mycobacteria and directly contribute to the virulence of diseases such as tuberculosis and leprosy. We have formed in vitro planar membranes using pure mycolic acids on circular apertures 20 to 90 µm in diameter. We find these membranes to be long lived and highly resistant to irreversible electroporation, demonstrating their general strength. Insertion of the outer membrane channel MspA into the membranes was observed indicating that the artificial mycolic acid membranes are suitable for controlled studies of the mycobacterial outer membrane and can be used in nanopore DNA translocation experiments.


Asunto(s)
Lípidos de la Membrana/química , Membranas Artificiales , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Permeabilidad de la Membrana Celular , Concentración de Iones de Hidrógeno , Nanoporos , Porinas/química
3.
G3 (Bethesda) ; 10(10): 3479-3488, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32859687

RESUMEN

Social wasps of the genus Vespula have spread to nearly all landmasses worldwide and have become significant pests in their introduced ranges, affecting economies and biodiversity. Comprehensive genome assemblies and annotations for these species are required to develop the next generation of control strategies and monitor existing chemical control. We sequenced and annotated the genomes of the common wasp (Vespula vulgaris), German wasp (Vespula germanica), and the western yellowjacket (Vespula pensylvanica). Our chromosome-level Vespula assemblies each contain 176-179 Mb of total sequence assembled into 25 scaffolds, with 10-200 unanchored scaffolds, and 16,566-18,948 genes. We annotated gene sets relevant to the applied management of invasive wasp populations, including genes associated with spermatogenesis and development, pesticide resistance, olfactory receptors, immunity and venom. These genomes provide evidence for active DNA methylation in Vespidae and tandem duplications of venom genes. Our genomic resources will contribute to the development of next-generation control strategies, and monitoring potential resistance to chemical control.


Asunto(s)
Avispas , Animales , Genómica , Avispas/genética
4.
Nat Biotechnol ; 37(6): 651-656, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31011178

RESUMEN

Nanopore DNA sequencing is limited by low base-calling accuracy. Improved base-calling accuracy has so far relied on specialized base-calling algorithms, different nanopores and motor enzymes, or biochemical methods to re-read DNA molecules. Two primary error modes hamper sequencing accuracy: enzyme mis-steps and sequences with indistinguishable signals. We vary the driving voltage from 100 to 200 mV, with a frequency of 200 Hz, across a Mycobacterium smegmatis porin A (MspA) nanopore, thus changing how the DNA strand moves through the nanopore. A DNA helicase moves the DNA through the nanopore in discrete steps, and the variable voltage moves the DNA continuously between these steps. The electronic signal produced with variable voltage is used to overcome the primary error modes in base calling. We found that single-passage de novo base-calling accuracy of 62.7 ± 0.5% with a constant driving voltage improves to 79.3 ± 0.3% with a variable driving voltage. The variable-voltage sequencing mode is complementary to other methods to boost the accuracy of nanopore sequencing and could be incorporated into any enzyme-actuated nanopore sequencing device.


Asunto(s)
ADN Helicasas/genética , ADN/genética , Nanoporos , Porinas/genética , Algoritmos , ADN/aislamiento & purificación , ADN Helicasas/química , Mycobacterium smegmatis/genética , Porinas/química , Análisis de Secuencia de ADN/métodos
5.
Nat Commun ; 9(1): 870, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29491419

RESUMEN

The cow rumen is adapted for the breakdown of plant material into energy and nutrients, a task largely performed by enzymes encoded by the rumen microbiome. Here we present 913 draft bacterial and archaeal genomes assembled from over 800 Gb of rumen metagenomic sequence data derived from 43 Scottish cattle, using both metagenomic binning and Hi-C-based proximity-guided assembly. Most of these genomes represent previously unsequenced strains and species. The draft genomes contain over 69,000 proteins predicted to be involved in carbohydrate metabolism, over 90% of which do not have a good match in public databases. Inclusion of the 913 genomes presented here improves metagenomic read classification by sevenfold against our own data, and by fivefold against other publicly available rumen datasets. Thus, our dataset substantially improves the coverage of rumen microbial genomes in the public databases and represents a valuable resource for biomass-degrading enzyme discovery and studies of the rumen microbiome.


Asunto(s)
Bacterias/genética , Genoma Bacteriano , Metagenómica , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Bovinos , Metagenoma , Filogenia , Rumen/microbiología
7.
Nat Biotechnol ; 32(8): 829-33, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24964173

RESUMEN

Nanopore sequencing of DNA is a single-molecule technique that may achieve long reads, low cost and high speed with minimal sample preparation and instrumentation. Here, we build on recent progress with respect to nanopore resolution and DNA control to interpret the procession of ion current levels observed during the translocation of DNA through the pore MspA. As approximately four nucleotides affect the ion current of each level, we measured the ion current corresponding to all 256 four-nucleotide combinations (quadromers). This quadromer map is highly predictive of ion current levels of previously unmeasured sequences derived from the bacteriophage phi X 174 genome. Furthermore, we show nanopore sequencing reads of phi X 174 up to 4,500 bases in length, which can be unambiguously aligned to the phi X 174 reference genome, and demonstrate proof-of-concept utility with respect to hybrid genome assembly and polymorphism detection. This work provides a foundation for nanopore sequencing of long, natural DNA strands.


Asunto(s)
ADN/genética , Nanoporos , Análisis de Secuencia de ADN/métodos
8.
Nat Biotechnol ; 30(4): 349-53, 2012 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-22446694

RESUMEN

Nanopore technologies are being developed for fast and direct sequencing of single DNA molecules through detection of ionic current modulations as DNA passes through a pore's constriction. Here we demonstrate the ability to resolve changes in current that correspond to a known DNA sequence by combining the high sensitivity of a mutated form of the protein pore Mycobacterium smegmatis porin A (MspA) with phi29 DNA polymerase (DNAP), which controls the rate of DNA translocation through the pore. As phi29 DNAP synthesizes DNA and functions like a motor to pull a single-stranded template through MspA, we observe well-resolved and reproducible ionic current levels with median durations of ∼28 ms and ionic current differences of up to 40 pA. Using six different DNA sequences with readable regions 42-53 nucleotides long, we record current traces that map to the known DNA sequences. With single-nucleotide resolution and DNA translocation control, this system integrates solutions to two long-standing hurdles to nanopore sequencing.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanoporos , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Nucleótidos/química , Nucleótidos/genética , Porinas/química , Porinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA