Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Neurol ; 368: 114479, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454712

RESUMEN

Spinal cord injury (SCI)-induced tissue damage spreads to neighboring spared cells in the hours, days, and weeks following injury, leading to exacerbation of tissue damage and functional deficits. Among the biochemical changes is the rapid reduction of cellular nicotinamide adenine dinucleotide (NAD+), an essential coenzyme for energy metabolism and an essential cofactor for non-redox NAD+-dependent enzymes with critical functions in sensing and repairing damaged tissue. NAD+ depletion propagates tissue damage. Augmenting NAD+ by exogenous application of NAD+, its synthesizing enzymes, or its cellular precursors mitigates tissue damage. Nicotinamide riboside (NR) is considered to be one of the most promising NAD+ precursors for clinical application due to its ability to safely and effectively boost cellular NAD+ synthesis in rats and humans. Moreover, various preclinical studies have demonstrated that NR can provide tissue protection. Despite these promising findings, little is known about the potential benefits of NR in the context of SCI. In the current study, we tested whether NR administration could effectively increase NAD+ levels in the injured spinal cord and whether this augmentation of NAD+ would promote spinal cord tissue protection and ultimately lead to improvements in locomotor function. Our findings indicate that administering NR (500 mg/kg) intraperitoneally from four days before to two weeks after a mid-thoracic contusion-SCI injury, effectively doubles NAD+ levels in the spinal cord of Long-Evans rats. Moreover, NR administration plays a protective role in preserving spinal cord tissue post-injury, particularly in neurons and axons, as evident from the observed gray and white matter sparing. Additionally, it enhances motor function, as evaluated through the BBB subscore and missteps on the horizontal ladderwalk. Collectively, these findings demonstrate that administering NR, a precursor of NAD+, increases NAD+ within the injured spinal cord and effectively mitigates the tissue damage and functional decline that occurs following SCI.


Asunto(s)
NAD , Traumatismos de la Médula Espinal , Humanos , Ratas , Animales , NAD/metabolismo , Ratas Long-Evans , Niacinamida/farmacología , Niacinamida/uso terapéutico , Niacinamida/metabolismo , Compuestos de Piridinio , Traumatismos de la Médula Espinal/tratamiento farmacológico
2.
J Neurosci ; 31(18): 6858-70, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21543616

RESUMEN

Oncogenic transformation of postmitotic neurons triggers cell death, but the identity of genes critical for degeneration remain unclear. The antitumor antibiotic mithramycin prolongs survival of mouse models of Huntington's disease in vivo and inhibits oxidative stress-induced death in cortical neurons in vitro. We had correlated protection by mithramycin with its ability to bind to GC-rich DNA and globally displace Sp1 family transcription factors. To understand how antitumor drugs prevent neurodegeneration, here we use structure-activity relationships of mithramycin analogs to discover that selective DNA-binding inhibition of the drug is necessary for its neuroprotective effect. We identify several genes (Myc, c-Src, Hif1α, and p21(waf1/cip1)) involved in neoplastic transformation, whose altered expression correlates with protective doses of mithramycin or its analogs. Most interestingly, inhibition of one these genes, Myc, is neuroprotective, whereas forced expression of Myc induces Rattus norvegicus neuronal cell death. These results support a model in which cancer cell transformation shares key genetic components with neurodegeneration.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neuronas/efectos de los fármacos , Plicamicina/análogos & derivados , Plicamicina/farmacología , Factor de Transcripción Sp1/metabolismo , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Western Blotting , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Inmunoprecipitación de Cromatina , Drosophila , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Transcripción Sp1/genética , Relación Estructura-Actividad
3.
J Med Chem ; 50(13): 3054-61, 2007 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-17539623

RESUMEN

We compare the ability of two structurally different classes of epigenetic modulators, namely, histone deacetylase (HDAC) inhibitors containing either a hydroxamate or a mercaptoacetamide as the zinc binding group, to protect cortical neurons in culture from oxidative stress-induced death. This study reveals that some of the mercaptoacetamide-based HDAC inhibitors are fully protective, whereas the hydroxamates show toxicity at higher concentrations. Our present results appear to be consistent with the possibility that the mercaptoacetamide-based HDAC inhibitors interact with a different subset of the HDAC isozymes [less activity at HDAC1 and 2 correlates with less inhibitor toxicity], or alternatively, are interacting selectively with only the cytoplasmic HDACs that are crucial for protection from oxidative stress.


Asunto(s)
Acetamidas/síntesis química , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos/síntesis química , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/síntesis química , Compuestos de Sulfhidrilo/síntesis química , Acetamidas/química , Acetamidas/farmacología , Acetilación , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Epigénesis Genética , Histona Desacetilasas/química , Histona Desacetilasas/genética , Histonas/metabolismo , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Neuronas/citología , Neuronas/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología
4.
EMBO Mol Med ; 2(9): 349-70, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20665636

RESUMEN

Caused by a polyglutamine expansion in the huntingtin protein, Huntington's disease leads to striatal degeneration via the transcriptional dysregulation of a number of genes, including those involved in mitochondrial biogenesis. Here we show that transglutaminase 2, which is upregulated in HD, exacerbates transcriptional dysregulation by acting as a selective corepressor of nuclear genes; transglutaminase 2 interacts directly with histone H3 in the nucleus. In a cellular model of HD, transglutaminase inhibition de-repressed two established regulators of mitochondrial function, PGC-1alpha and cytochrome c and reversed susceptibility of human HD cells to the mitochondrial toxin, 3-nitroproprionic acid; however, protection mediated by transglutaminase inhibition was not associated with improved mitochondrial bioenergetics. A gene microarray analysis indicated that transglutaminase inhibition normalized expression of not only mitochondrial genes but also 40% of genes that are dysregulated in HD striatal neurons, including chaperone and histone genes. Moreover, transglutaminase inhibition attenuated degeneration in a Drosophila model of HD and protected mouse HD striatal neurons from excitotoxicity. Altogether these findings demonstrate that selective TG inhibition broadly corrects transcriptional dysregulation in HD and defines a novel HDAC-independent epigenetic strategy for treating neurodegeneration.


Asunto(s)
Proteínas de Unión al GTP/antagonistas & inhibidores , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/genética , Transcripción Genética , Transglutaminasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Citocromos c/genética , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Drosophila , Metabolismo Energético , Inhibidores Enzimáticos/farmacología , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/metabolismo , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Mitocondrias/metabolismo , Nitrocompuestos/toxicidad , Péptidos/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Regiones Promotoras Genéticas , Propionatos/toxicidad , Proteína Glutamina Gamma Glutamiltransferasa 2 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA