Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Glob Chang Biol ; 18(10): 3004-3014, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28741835

RESUMEN

Nitrogen fixation by diazotrophic cyanobacteria is a critical source of new nitrogen to the oligotrophic surface ocean. Research to date indicates that some diazotroph groups may increase nitrogen fixation under elevated pCO2 . To test this in natural plankton communities, four manipulation experiments were carried out during two voyages in the South Pacific (30-35o S). High CO2 treatments, produced using 750 ppmv CO2 to adjust pH to 0.2 below ambient, and 'Greenhouse' treatments (0.2 below ambient pH and ambient temperature +3 °C), were compared with Controls in trace metal clean deckboard incubations in triplicate. No significant change was observed in nitrogen fixation in either the High CO2 or Greenhouse treatments over 5 day incubations. qPCR measurements and optical microscopy determined that the diazotroph community was dominated by Group A unicellular cyanobacteria (UCYN-A), which may account for the difference in response of nitrogen fixation under elevated CO2 to that reported previously for Trichodesmium. This may reflect physiological differences, in that the greater cell surface area:volume of UCYN-A and its lack of metabolic pathways involved in carbon fixation may confer no benefit under elevated CO2 . However, multiple environmental controls may also be a factor, with the low dissolved iron concentrations in oligotrophic surface waters limiting the response to elevated CO2 . If nitrogen fixation by UCYN-A is not stimulated by elevated pCO2 , then future increases in CO2 and warming may alter the regional distribution and dominance of different diazotroph groups, with implications for dissolved iron availability and new nitrogen supply in oligotrophic regions.

2.
JCI Insight ; 7(11)2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35503656

RESUMEN

In many solid cancers, tumor-associated macrophages (TAM) represent the predominant myeloid cell population. Antigen (Ag) cross-presentation leading to tumor Ag-directed cytotoxic CD8+ T cell responses is crucial for antitumor immunity. However, the role of recruited monocyte-derived macrophages, including TAM, as potential cross-presenting cells is not well understood. Here, we show that primary human as well as mouse CD206+ macrophages are effective in functional cross-presentation of soluble self-Ag and non-self-Ag, including tumor-associated Ag (TAA), as well as viral Ag. To confirm the presence of cross-presenting TAM in vivo, we performed phenotypic and functional analysis of TAM from B16-F10 and CT26 syngeneic tumor models and have identified CD11b+F4/80hiCD206+ TAM to effectively cross-present TAA. We show that CD11b+CD206+ TAM represent the dominant tumor-infiltrating myeloid cell population, expressing a unique cell surface repertoire, promoting Ag cross-presentation and Ag-specific CD8+ T cell activation comparable with cross-presenting CLEC9A+ DCs (cDC1). The presence of cross-presenting CD206+ TAM is associated with reduced tumor burden in mouse syngeneic tumor models and with improved overall survival in cutaneous melanoma patients. Therefore, the demonstration of effective Ag cross-presentation capabilities of CD206+ TAM, including their clinical relevance, expands our understanding of TAM phenotypic diversity and functional versatility.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Antígenos de Neoplasias , Reactividad Cruzada , Humanos , Ratones , Neoplasias Cutáneas/patología , Macrófagos Asociados a Tumores
3.
Environ Microbiol ; 11(8): 1945-58, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19397681

RESUMEN

The nitrogen cycling of Lake Cadagno was investigated by using a combination of biogeochemical and molecular ecological techniques. In the upper oxic freshwater zone inorganic nitrogen concentrations were low (up to approximately 3.4 microM nitrate at the base of the oxic zone), while in the lower anoxic zone there were high concentrations of ammonium (up to 40 microM). Between these zones, a narrow zone was characterized by no measurable inorganic nitrogen, but high microbial biomass (up to 4 x 10(7) cells ml(-1)). Incubation experiments with (15)N-nitrite revealed nitrogen loss occurring in the chemocline through denitrification (approximately 3 nM N h(-1)). At the same depth, incubations experiments with (15)N(2)- and (13)C(DIC)-labelled bicarbonate, indicated substantial N(2) fixation (31.7-42.1 pM h(-1)) and inorganic carbon assimilation (40-85 nM h(-1)). Catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and sequencing of 16S rRNA genes showed that the microbial community at the chemocline was dominated by the phototrophic green sulfur bacterium Chlorobium clathratiforme. Phylogenetic analyses of the nifH genes expressed as mRNA revealed a high diversity of N(2) fixers, with the highest expression levels right at the chemocline. The majority of N(2) fixers were related to Chlorobium tepidum/C. phaeobacteroides. By using Halogen In Situ Hybridization-Secondary Ion Mass Spectroscopy (HISH-SIMS), we could for the first time directly link Chlorobium to N(2) fixation in the environment. Moreover, our results show that N(2) fixation could partly compensate for the N loss and that both processes occur at the same locale at the same time as suggested for the ancient Ocean.


Asunto(s)
Agua Dulce/microbiología , Fijación del Nitrógeno , Nitrógeno/análisis , Dióxido de Carbono/análisis , Chlorobium/clasificación , Chlorobium/aislamiento & purificación , Chlorobium/metabolismo , Chromatium/aislamiento & purificación , Chromatium/metabolismo , Agua Dulce/química , Hibridación in Situ , Nitritos/análisis , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia , Compuestos de Amonio Cuaternario/análisis , ARN Ribosómico 16S/metabolismo , Suiza
4.
Appl Environ Microbiol ; 74(6): 1922-31, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18245263

RESUMEN

Understanding the factors that influence the distribution and abundance of marine diazotrophs is important in order to assess their role in the oceanic nitrogen cycle. Environmental DNA samples from four cruises to the North Atlantic Ocean, covering a sampling area of 0 degrees N to 42 degrees N and 67 degrees W to 13 degrees W, were analyzed for the presence and amount of seven nifH phylotypes using real-time quantitative PCR and TaqMan probes. The cyanobacterial phylotypes dominated in abundance (94% of all nifH copies detected) and were the most widely distributed. The filamentous cyanobacterial type, which included both Trichodesmium and Katagnymene, was the most abundant (51%), followed by group A, an uncultured unicellular cyanobacterium (33%), and gamma A, an uncultured gammaproteobacterium (6%). Group B, unicellular cyanobacterium Crocosphaera, and group C Cyanothece-like phylotypes were not often detected (6.9% and 2.3%, respectively), but where present, could reach high concentrations. Gamma P, another uncultured gammaproteobacterium, was seldom detected (0.5%). Water temperature appeared to influence the distribution of many nifH phylotypes. Very high (up to 1 x 10(6) copies liter(-1)) nifH concentrations of group A were detected in the eastern basin (25 to 17 degrees N, 27 to 30 degrees W), where the temperature ranged from 20 to 23 degrees C. The highest concentrations of filamentous phylotypes were measured between 25 and 30 degrees C. The uncultured cluster III phylotype was uncommon (0.4%) and was associated with mean water temperatures of 18 degrees C. Diazotroph abundance was highest in regions where modeled average dust deposition was between 1 and 2 g/m(2)/year.


Asunto(s)
Proteínas Bacterianas/genética , Cianobacterias/genética , Oxidorreductasas/genética , Agua de Mar/microbiología , Océano Atlántico , Cianobacterias/clasificación , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Fijación del Nitrógeno/genética , Reacción en Cadena de la Polimerasa , Temperatura , Microbiología del Agua
5.
FEMS Microbiol Lett ; 363(21)2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27797867

RESUMEN

Polyploidy is a well-described trait in some prokaryotic organisms; however, it is unusual in marine microbes from oligotrophic environments, which typically display a tendency towards genome streamlining. The biogeochemically significant diazotrophic cyanobacterium Trichodesmium is a potential exception. With a relatively large genome and a comparatively high proportion of non-protein-coding DNA, Trichodesmium appears to allocate relatively more resources to genetic material than closely related organisms and microbes within the same environment. Through simultaneous analysis of gene abundance and direct cell counts, we show for the first time that Trichodesmium spp. can also be highly polyploid, containing as many as 100 genome copies per cell in field-collected samples and >600 copies per cell in laboratory cultures. These findings have implications for the widespread use of the abundance of the nifH gene (encoding a subunit of the N2-fixing enzyme nitrogenase) as an approach for quantifying the abundance and distribution of marine diazotrophs. Moreover, polyploidy may combine with the unusual genomic characteristics of this genus both in reflecting evolutionary dynamics and influencing phenotypic plasticity and ecological resilience.

6.
PLoS One ; 10(6): e0128912, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26103055

RESUMEN

Marine dinitrogen (N2) fixation studies have focused nearly exclusively on cyanobacterial diazotrophs; however γ-proteobacteria are an abundant component of the marine community and have been largely overlooked until recently. Here we present a phylogenetic analysis of all nifH γ-proteobacterial sequences available in public databases and qPCR data of a γ-proteobacterial phylotype, Gamma A (UMB), obtained during several research cruises. Our analysis revealed a complex diversity of diazotrophic γ-proteobacteria. One phylotype in particular, Gamma A, was described in several traditional and quantitative PCR studies. Though several γ-proteobacterial nifH sequences have been described as laboratory contaminants, Gamma A is part of a large cluster of sequences isolated from marine environments and distantly related to the clade of contaminants. Using a TaqMan probe and primer set, Gamma A nifH DNA abundance and expression were analyzed in nearly 1000 samples collected during 15 cruises to the Atlantic and Pacific Oceans. The data showed that Gamma A is an active, cosmopolitan diazotroph found throughout oxygenated, oligotrophic waters reaching maximum abundances of 8 x 104 nifH DNA copies l-1 and 5 x 105 nifH transcript copies l-1. Gamma A nifH transcript abundances were on average 3 fold higher than nifH DNA abundances. The widespread distribution and activity of Gamma A indicate that it has potential to be a globally important N2 fixing organism.


Asunto(s)
Oxidorreductasas/genética , Proteobacteria/genética , Genes Bacterianos , Funciones de Verosimilitud , Filogenia , Proteobacteria/clasificación , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
PLoS One ; 6(12): e28989, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174940

RESUMEN

During the winter of 2006 we measured nifH gene abundances, dinitrogen (N(2)) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 10(6) L(-1)nifH gene copies, unicellular group A cyanobacteria with up to 10(5) L(-1)nifH gene copies and gamma A proteobacteria with up to 10(4) L(-1)nifH gene copies. N(2) fixation rates were low and ranged between 0.032-1.28 nmol N L(-1) d(-1) with a mean of 0.30 ± 0.29 nmol N L(-1) d(-1) (1σ, n = 65). CO(2)-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2 ± 3.2 in surface waters. Nevertheless, N(2) fixation rates contributed only 0.55 ± 0.87% (range 0.03-5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N(2) fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N(2) fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the consequences of climate warming for N(2) fixation in the North Atlantic.


Asunto(s)
Fijación del Nitrógeno/fisiología , Clima Tropical , Océano Atlántico , Cianobacterias/genética , Genes Bacterianos/genética , Geografía , Calentamiento Global , Modelos Biológicos , Fijación del Nitrógeno/genética , Análisis de Regresión , Salinidad , Estaciones del Año , Navíos , Temperatura
8.
Appl Environ Microbiol ; 71(12): 7910-9, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16332767

RESUMEN

To understand the structure of marine diazotrophic communities in the tropical and subtropical Atlantic Ocean, the molecular diversity of the nifH gene was studied by nested PCR amplification using degenerate primers, followed by cloning and sequencing. Sequences of nifH genes were amplified from environmental DNA samples collected during three cruises (November-December 2000, March 2002, and October-November 2002) covering an area between 0 to 28.3 degrees N and 56.6 to 18.5 degrees W. A total of 170 unique sequences were recovered from 18 stations and 23 depths. Samples from the November-December 2000 cruise contained both unicellular and filamentous cyanobacterial nifH phylotypes, as well as gamma-proteobacterial and cluster III sequences, so far only reported in the Pacific Ocean. In contrast, samples from the March 2002 cruise contained only phylotypes related to the uncultured group A unicellular cyanobacteria. The October-November 2002 cruise contained both filamentous and unicellular cyanobacterial and gamma-proteobacterial sequences. Several sequences were identical at the nucleotide level to previously described environmental sequences from the Pacific Ocean, including group A sequences. The data suggest a community shift from filamentous cyanobacteria in surface waters to unicellular cyanobacteria and/or heterotrophic bacteria in deeper waters. With one exception, filamentous cyanobacterial nifH sequences were present within temperatures ranging between 26.5 and 30 degrees C and where nitrate was undetectable. In contrast, nonfilamentous nifH sequences were found throughout a broader temperature range, 15 to 30 degrees C, more often in waters with temperature of <26 degrees C, and were sometimes recovered from waters with detectable nitrate concentrations.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Clima Tropical , Microbiología del Agua , Océano Atlántico , Bacterias/genética , Bacterias/aislamiento & purificación , Datos de Secuencia Molecular , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia , Reacción en Cadena de la Polimerasa , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA