Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 17(1): 739, 2016 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-27640184

RESUMEN

BACKGROUND: Chromosomal translocations are a hallmark of cancer cells and give rise to fusion oncogenes. To gain insight into the mechanisms governing tumorigenesis, adequate model cell lines are required. RESULTS: We employ the versatile CRISPR/Cas system to engineer cell lines in which chromosomal translocations are either generated de novo (CD74-ROS1) or existing translocations are reverted back to the original configuration (BCR-ABL1). To this end, we co-apply two guide RNAs to artificially generate two breakpoints and screen for spontaneous fusion events by PCR. CONCLUSIONS: The approach we use is efficient and delivers clones bearing translocationsin a predictable fashion. Detailed analysis suggests that the clones display no additional undesired alterations, implying that the approach is robust and precise.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Translocación Genética , Línea Celular Tumoral , Transformación Celular Neoplásica , Proteínas de Fusión bcr-abl/genética , Fusión Génica , Reordenamiento Génico , Marcación de Gen , Ingeniería Genética , Humanos , ARN Guía de Kinetoplastida
2.
Nat Methods ; 10(10): 965-71, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24161985

RESUMEN

Knockout collections are invaluable tools for studying model organisms such as yeast. However, there are no large-scale knockout collections of human cells. Using gene-trap mutagenesis in near-haploid human cells, we established a platform to generate and isolate individual 'gene-trapped cells' and used it to prepare a collection of human cell lines carrying single gene-trap insertions. In most cases, the insertion can be reversed. This growing library covers 3,396 genes, one-third of the expressed genome, is DNA-barcoded and allows systematic screens for a wide variety of cellular phenotypes. We examined cellular responses to TNF-α, TGF-ß, IFN-γ and TNF-related apoptosis-inducing ligand (TRAIL), to illustrate the value of this unique collection of isogenic human cell lines.


Asunto(s)
Biblioteca de Genes , Haploidia , Mutagénesis Insercional/métodos , Genética Inversa/métodos , Línea Celular Tumoral , Genoma Humano , Humanos , Datos de Secuencia Molecular
3.
Autophagy ; 18(1): 24-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33570005

RESUMEN

Mitochondria are dynamic, multifunctional cellular organelles that play a fundamental role in maintaining cellular homeostasis. Keeping the quality of mitochondria in check is of essential importance for functioning and survival of the cells. Selective autophagic clearance of flawed mitochondria, a process termed mitophagy, is one of the most prominent mechanisms through which cells maintain a healthy mitochondrial pool. The best-studied pathway through which mitophagy is exerted is the PINK1-PRKN pathway. However, an increasing number of studies have shown an existence of alternative pathways, where different proteins and lipids are able to recruit autophagic machinery independently of PINK1 and PRKN. The significance of PRKN-independent mitophagy pathways is reflected in various physiological and pathophysiological processes, but many questions regarding the regulation and the interplay between these pathways remain open. Here we review the current knowledge and recent progress made in the field of PRKN-independent mitophagy. Particularly we focus on the regulation of various receptors that participate in targeting impaired mitochondria to autophagosomes independently of PRKN.Abbreviations: AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; BCL2: BCL2 apoptosis regulator; BH: BCL2 homology; CCCP: Carbonyl cyanide m-chlorophenylhydrazone; CL: cardiolipin; ER: endoplasmic reticulum; FCCP: carbonyl cyanide p-trifluoromethoxyphenylhydrazone; IMM: inner mitochondrial membrane; IMS: mitochondrial intermembrane space; LIR: LC3-interacting region; MDVs: mitochondrial-derived vesicles; MTORC1: mechanistic target of rapamycin kinase complex 1; OMM: outer mitochondrial membrane; OXPHOS: oxidative phosphorylation; PD: Parkinson disease; PtdIns3K: phosphatidylinositol 3-kinase; RGC: retinal ganglion cell; RING: really interesting new gene; ROS: reactive oxygen species; SUMO: small ubiquitin like modifier; TBI: traumatic brain injury; TM: transmembrane.


Asunto(s)
Autofagia , Mitofagia , Autofagia/fisiología , Membranas Mitocondriales/metabolismo , Mitofagia/genética , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
Nat Commun ; 13(1): 6283, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36270994

RESUMEN

During autophagy, cytosolic cargo is sequestered into double-membrane vesicles called autophagosomes. The contributions of specific lipids, such as cholesterol, to the membranes that form the autophagosome, remain to be fully characterized. Here, we demonstrate that short term cholesterol depletion leads to a rapid induction of autophagy and a corresponding increase in autophagy initiation events. We further show that the ER-localized cholesterol transport protein GRAMD1C functions as a negative regulator of starvation-induced autophagy and that both its cholesterol transport VASt domain and membrane binding GRAM domain are required for GRAMD1C-mediated suppression of autophagy initiation. Similar to its yeast orthologue, GRAMD1C associates with mitochondria through its GRAM domain. Cells lacking GRAMD1C or its VASt domain show increased mitochondrial cholesterol levels and mitochondrial oxidative phosphorylation, suggesting that GRAMD1C may facilitate cholesterol transfer at ER-mitochondria contact sites. Finally, we demonstrate that expression of GRAMD family proteins is linked to clear cell renal carcinoma survival, highlighting the pathophysiological relevance of cholesterol transport proteins.


Asunto(s)
Autofagia , Proteínas Portadoras , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Colesterol/metabolismo , Metabolismo Energético , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA