Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Am Soc Nephrol ; 25(2): 260-75, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24262798

RESUMEN

Thin-basement-membrane nephropathy (TBMN) and Alport syndrome (AS) are progressive collagen IV nephropathies caused by mutations in COL4A3/A4/A5 genes. These nephropathies invariably present with microscopic hematuria and frequently progress to proteinuria and CKD or ESRD during long-term follow-up. Nonetheless, the exact molecular mechanisms by which these mutations exert their deleterious effects on the glomerulus remain elusive. We hypothesized that defective trafficking of the COL4A3 chain causes a strong intracellular effect on the cell responsible for COL4A3 expression, the podocyte. To this end, we overexpressed normal and mutant COL4A3 chains (G1334E mutation) in human undifferentiated podocytes and tested their effects in various intracellular pathways using a microarray approach. COL4A3 overexpression in the podocyte caused chain retention in the endoplasmic reticulum (ER) that was associated with activation of unfolded protein response (UPR)-related markers of ER stress. Notably, the overexpression of normal or mutant COL4A3 chains differentially activated the UPR pathway. Similar results were observed in a novel knockin mouse carrying the Col4a3-G1332E mutation, which produced a phenotype consistent with AS, and in biopsy specimens from patients with TBMN carrying a heterozygous COL4A3-G1334E mutation. These results suggest that ER stress arising from defective localization of collagen IV chains in human podocytes contributes to the pathogenesis of TBMN and AS through activation of the UPR, a finding that may pave the way for novel therapeutic interventions for a variety of collagenopathies.


Asunto(s)
Colágeno Tipo IV/deficiencia , Estrés del Retículo Endoplásmico/fisiología , Membrana Basal Glomerular/metabolismo , Nefritis Hereditaria/metabolismo , Podocitos/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Autoantígenos/genética , Autoantígenos/fisiología , Biopsia , Células Cultivadas , Colágeno Tipo IV/genética , Colágeno Tipo IV/fisiología , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Perfilación de la Expresión Génica , Técnicas de Sustitución del Gen , Membrana Basal Glomerular/patología , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Heterocigoto , Humanos , Riñón/metabolismo , Riñón/patología , Ratones , Mutación Missense , Nefritis Hereditaria/genética , Nefritis Hereditaria/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Podocitos/patología , Mutación Puntual , Análisis por Matrices de Proteínas , Transporte de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes de Fusión , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/metabolismo , Transfección
2.
Mol Ther Methods Clin Dev ; 30: 377-393, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37645436

RESUMEN

X-linked Charcot-Marie-Tooth disease type 1 (CMT1X) is a demyelinating neuropathy resulting from loss-of-function mutations affecting the GJB1/connexin 32 (Cx32) gene. We previously showed functional and morphological improvement in Gjb1-null mice following AAV9-mediated delivery of human Cx32 driven by the myelin protein zero (Mpz) promoter in Schwann cells. However, CMT1X mutants may interfere with virally delivered wild-type (WT) Cx32. To confirm the efficacy of this vector also in the presence of CMT1X mutants, we delivered AAV9-Mpz-GJB1 by lumbar intrathecal injection in R75W/Gjb1-null and N175D/Gjb1-null transgenic lines expressing Golgi-retained mutations, before and after the onset of the neuropathy. Widespread expression of virally delivered Cx32 was demonstrated in both genotypes. Re-establishment of WT Cx32 function resulted in improved muscle strength and increased sciatic nerve motor conduction velocities in all treated groups from both mutant lines when treated before as well as after the onset of the neuropathy. Furthermore, morphological analysis showed improvement of myelination and reduction of inflammation in lumbar motor roots and peripheral nerves. In conclusion, this study provides proof of principle for a clinically translatable gene therapy approach to treat CMT1X before and after the onset of the neuropathy, even in the presence of endogenously expressed Golgi-retained Cx32 mutants.

3.
J Neurosci ; 30(37): 12274-80, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20844123

RESUMEN

During mouse development, the ventral spinal cord becomes organized into five progenitor domains that express different combinations of transcription factors and generate different subsets of neurons and glia. One of these domains, known as the p2 domain, generates two subtypes of interneurons, V2a and V2b. Here we have used genetic fate mapping and loss-of-function analysis to show that the transcription factor Sox1 is expressed in, and is required for, a third type of p2-derived interneuron, which we named V2c. These are close relatives of V2b interneurons, and, in the absence of Sox1, they switch to the V2b fate. In addition, we show that late-born V2a and V2b interneurons are heterogeneous, and subsets of these cells express the transcription factor Pax6. Our data demonstrate that interneuron diversification in the p2 domain is more complex than previously thought and directly implicate Sox1 in this process.


Asunto(s)
Diferenciación Celular/genética , Interneuronas/citología , Interneuronas/metabolismo , Neurogénesis , Factores de Transcripción SOXB1/fisiología , Médula Espinal/citología , Médula Espinal/metabolismo , Secuencia de Aminoácidos , Animales , Linaje de la Célula/genética , Cromosomas Artificiales Bacterianos/genética , Regulación del Desarrollo de la Expresión Génica , Interneuronas/clasificación , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutagénesis Insercional , Neurogénesis/genética , Factores de Transcripción SOXB1/genética , Médula Espinal/embriología , Activación Transcripcional/genética
4.
Biochem Biophys Res Commun ; 382(1): 69-73, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19258013

RESUMEN

During ventral spinal cord (vSC) development, the p3 and pMN progenitor domain boundary is thought to be maintained by cross-repressive interactions between NKX2.2 and PAX6. Using loss-of-function analysis during the neuron-glial fate switch we show that the identity of the p3 domain is not maintained by the repressive function of NKX2.2 on Pax6 expression, even in the absence of NKX2.9. We further show that NKX2.2 is necessary to induce the expression of Slit1 and Sulfatase 1 (Sulf1) in the vSC in a PAX6-independent manner. Conversely, we show that PAX6 regulates Sulf1/Slit1 expression in the vSC in an NKX2.2/NKX6.1-independent manner. Consequently, deregulation of Sulf1 expression in Pax6-mutant embryos has stage-specific implications on neural patterning, associated with enhancement of Sonic Hedgehog activity. On the other hand, deregulation of Slit1 expression in gliogenic neural progenitors leads to changes in Astrocyte subtype identity. These data provide important insights into specific functions of PAX6 and NKX2.2 during glial cell specification that have so far remained largely unexplored.


Asunto(s)
Astrocitos/citología , Diferenciación Celular/genética , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Médula Espinal/citología , Factores de Transcripción/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Embrión de Mamíferos/citología , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuroglía/citología , Neuroglía/fisiología , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Médula Espinal/embriología , Médula Espinal/metabolismo , Sulfotransferasas/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra
5.
Biochem Biophys Res Commun ; 384(2): 199-203, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19393620

RESUMEN

The ATP-binding cassette (ABC) transporter 2 (ABCG2) is expressed by stem cells in many organs and in stem cells of solid tumors. These cells are isolated based on the side population (SP) phenotype, a Hoechst 3342 dye efflux property believed to be conferred by ABCG2. Because of the limitations of this approach we generated transgenic mice that express Nuclear GFP (GFPn) coupled to the Puromycin-resistance gene, under the control of ABCG2 promoter/enhancer sequences. We show that ABCG2 is expressed in neural progenitors of the developing forebrain and spinal cord and in embryonic and adult endothelial cells of the brain. Using the neurosphere assay, we isolated tripotent ABCG2-expressing neural stem cells from embryonic mouse brain. This transgenic line is a powerful tool for studying the expression of ABCG2 in many tissues and for performing functional studies in different experimental settings.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/biosíntesis , Encéfalo/metabolismo , Ratones Transgénicos , Transportador de Casetes de Unión a ATP, Subfamilia G , Transportadoras de Casetes de Unión a ATP/genética , Alelos , Animales , Antimetabolitos Antineoplásicos/farmacología , Encéfalo/citología , Encéfalo/embriología , Núcleo Celular/metabolismo , Resistencia a Antineoplásicos/genética , Elementos de Facilitación Genéticos , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Ratones , Regiones Promotoras Genéticas , Puromicina/farmacología
6.
Biochem Biophys Res Commun ; 390(4): 1114-20, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19723505

RESUMEN

During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial (Nu/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling. We show that, SOX1 expression in the vSC is regulated by PAX6, NKX2.2 and Notch signalling in a domain-specific manner. We further show that SOX1 regulates the expression of Hes1 and that loss of Sox1 leads to enhanced production of oligodendrocyte precursors from the pMN. Finally, we show that Notch signalling functions upstream of SOX1 during this fate switch and is independently required for the acquisition of the glial fate perse by regulating Nuclear Factor I A expression in a PAX6/SOX1/HES1/HES5-independent manner. These data integrate functional roles of neural patterning factors, Notch signalling and SOX1 during gliogenesis.


Asunto(s)
Tipificación del Cuerpo , Neurogénesis , Neuroglía/citología , Receptores Notch/metabolismo , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/crecimiento & desarrollo , Animales , Proteína Homeobox Nkx-2.2 , Ratones , Ratones Transgénicos , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción SOXB1/genética , Transducción de Señal , Médula Espinal/citología
7.
Front Mol Neurosci ; 11: 152, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867344

RESUMEN

Studies proposed a model for embryonic neurogenesis where the expression levels of the SOXB2 and SOXB1 factors regulate the differentiation status of the neural stem cells. However, the precise role of the SOXB2 genes remains controversial. Therefore, this study aims to investigate the effects of individual deletions of the SOX21 and SOX14 genes during the development of the dorsal midbrain. We show that SOX21 and SOX14 function distinctly during the commitment of the GABAergic lineage. More explicitly, deletion of SOX21 reduced the expression of the GABAergic precursor marker GATA3 and BHLHB5 while the expression of GAD6, which marks GABAergic terminal differentiation, was not affected. In contrast deletion of SOX14 alone was sufficient to inhibit terminal differentiation of the dorsal midbrain GABAergic neurons. Furthermore, we demonstrate through gain-of-function experiments, that despite the homology of SOX21 and SOX14, they have unique gene targets and cannot compensate for the loss of each other. Taken together, these data do not support a pan-neurogenic function for SOXB2 genes in the dorsal midbrain, but instead they influence, sequentially, the specification of GABAergic neurons.

8.
J Biomed Mater Res A ; 104(1): 227-38, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26362825

RESUMEN

The popularity of vascular stents continues to increase for a variety of applications, including coronary, lower limb, renal, carotid, and neurovascular disorders. However, their clinical effectiveness is hindered by numerous postdeployment complications, which may stimulate inflammatory and fibrotic reactions. The purpose of this study was to evaluate the vessel inflammatory response via in vivo imaging in a mouse stent implantation model. Corroded and noncorroded self-expanding miniature nitinol stents were implanted in mice abdominal aortas, and novel in vivo imaging techniques were used to assess trafficking and accumulation of fluorescent donor monocytes as well as cellular proliferation at the implantation site. Monocytes were quantitatively tracked in vivo and found to rapidly clear from circulation within hours after injection. Differences were found between the test groups with respect to the numbers of recruited monocytes and the intensity of the resulting fluorescent signal. Image analysis also revealed a subtle increase in matrix metalloproteinase activity in corroded compared with the normal stented aortas. In conclusion, this study has been successful in developing a murine stent inflammation model and applying novel in vivo imaging tools and methods to monitor the complex biological processes of the host vascular wall response.


Asunto(s)
Aorta Abdominal/patología , Inflamación/patología , Monitoreo Fisiológico , Stents , Aleaciones/farmacología , Animales , Aorta Abdominal/efectos de los fármacos , Aorta Abdominal/enzimología , Separación Celular , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/patología , Corrosión , Modelos Animales de Enfermedad , Fluorescencia , Masculino , Metaloproteinasas de la Matriz/metabolismo , Metales/sangre , Ratones , Monocitos/citología , Monocitos/efectos de los fármacos
9.
Gene Expr Patterns ; 13(8): 328-34, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23816521

RESUMEN

The embryonic spinal cord in mice is organized into eleven progenitor domains. Cells in each domain first produce neurons and then switch to specifying glia. Five of these domains known as p3, pMN, p2, p1 and p0 are located in the ventral spinal cord and each expresses a unique code of transcription factors (TFs) that define the molecular profile of progenitor cells. This code is largely responsible for determining the subtype specification of neurons generated from each domain. Pax6 codes for a homedomain-containing TF that plays a central role in defining the molecular boundaries between the two ventral-most domains, p3 and pMN. Using fate mapping and gene expression studies we show that PAX6, in addition to each patterning function, is expressed in a group of late born interneurons that derive from the p2 and p0 domains. The p2-derived neurons represent a subset of late born V2b interneurons and their specification depends on Notch signaling. The V0 neurons represent V0v ventral neurons expressing Pax2. Our data demonstrate that interneuron diversity in the ventral spinal cord is more complex than originally appreciated and point to the existence of additional mechanisms that determine interneuron diversity, particularly in the p2 domain.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Interneuronas/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Médula Espinal/citología , Animales , Tipificación del Cuerpo , Linaje de la Célula , Proteínas del Ojo/genética , Femenino , Factor de Transcripción GATA3/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Factor de Transcripción PAX2/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Receptores Notch/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Médula Espinal/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA