RESUMEN
Glutamine dependency has been shown to be a metabolic vulnerability in acute myeloid leukemia (AML). Prior studies using several in vivo AML models showed that depletion of plasma glutamine induced by the long-acting crisantaspase (pegcrisantaspase or PegC) was synergistic with the BCL-2 inhibitor venetoclax (Ven), resulting in significantly reduced leukemia burden and enhanced survival. Here, we report a phase 1 study (NCT04666649) of Ven and PegC combination (VenPegC) for treating adult patients with relapsed or refractory AML, including patients who had previously received Ven. The primary endpoints were incidence of regimen limiting toxicities (RLT) and maximum tolerated dose (MTD). Twenty-five patients received at least one PegC dose with Ven and 18 efficacy-evaluable patients completed at least one VenPegC cycle; 12 (67%) had previously received Ven. Hyperbilirubinemia was the RLT and occurred in 60% of patients treated with VenPegC; 20% had Grade ≥3 bilirubin elevations. MTD was determined to be Ven 400 mg daily with biweekly PegC 750 IU/m2. The most common treatment-related adverse events of any Grade in 25 patients who received VenPegC included antithrombin III decrease (52%), elevated transaminases (36-48%), fatigue (28%), and hypofibrinogenemia (24%). No thromboembolic or hemorrhagic adverse events or clinical pancreatitis were observed. The overall complete remission rate in efficacy-evaluable patients was 33%. Response correlated with alterations in proteins involved in mRNA translation. In patients with RUNX1 mutations, the composite complete rate was 100%.
RESUMEN
Treatments for advanced and recurrent ovarian cancer remain a challenge due to a lack of potent, selective, and effective therapeutics. Here, we developed the basis for a transformative anticancer strategy based on anthrax toxin that has been engineered to be selectively activated by the catalytic power of zymogen-activating proteases on the surface of malignant tumor cells to induce cell death. Exposure to the engineered toxin is cytotoxic to ovarian tumor cell lines and ovarian tumor spheroids derived from patient ascites. Preclinical studies demonstrate that toxin treatment induces tumor regression in several in vivo ovarian cancer models, including patient-derived xenografts, without adverse side effects, supportive of progression toward clinical evaluation. These data lay the groundwork for developing therapeutics for treating women with late-stage and recurrent ovarian cancers, utilizing a mechanism distinct from current anticancer therapies.
Asunto(s)
Antígenos Bacterianos , Antineoplásicos , Toxinas Bacterianas , Neoplasias Ováricas , Profármacos , Serina Proteasas , Antígenos Bacterianos/farmacología , Antígenos Bacterianos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Toxinas Bacterianas/farmacología , Toxinas Bacterianas/uso terapéutico , Línea Celular Tumoral , Precursores Enzimáticos/metabolismo , Femenino , Humanos , Recurrencia Local de Neoplasia , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Profármacos/farmacología , Profármacos/uso terapéutico , Serina Proteasas/metabolismo , Esferoides Celulares , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Immune-checkpoint inhibitors (ICIs) are an effective therapeutic strategy, improving the survival of patients with lung cancer compared with conventional treatments. However, novel predictive biomarkers are needed to stratify which patients derive clinical benefit because the currently used and highly heterogenic histological PD-L1 has shown low accuracy. Liquid biopsy is the analysis of biomarkers in body fluids and represents a minimally invasive tool that can be used to monitor tumor evolution and treatment effects, potentially reducing biases associated with tumor heterogeneity associated with tissue biopsies. In this context, cytokines, such as transforming growth factor-ß (TGF-ß), can be found free in circulation in the blood and packaged into extracellular vesicles (EVs), which have a specific delivery tropism and can affect in tumor/immune system interaction. TGF-ß is an immunosuppressive cytokine that plays a crucial role in tumor immune escape, treatment resistance, and metastasis. Thus, we aimed to evaluate the predictive value of circulating and EV TGF-ß in patients with non-small-cell lung cancer receiving ICIs. METHODS: Plasma samples were collected in 33 patients with advanced non-small-cell lung cancer before and during treatment with ICIs. EV were isolated from plasma by serial ultracentrifugation methods and circulating and EV TGF-ß expression levels were evaluated by enzyme-linked immunosorbent assay. RESULTS: Baseline high expression of TGF-ß in EVs was associated with nonresponse to ICIs as well as shorter progression-free survival and overall survival, outperforming circulating TGF-ß levels and tissue PD-L1 as a predictive biomarker. CONCLUSION: If validated, EV TGF-ß could be used to improve patient stratification, increasing the effectiveness of treatment with ICIs and potentially informing combinatory treatments with TGF-ß blockade. PLAIN LANGUAGE SUMMARY: Treatment with immune-checkpoint inhibitors (ICIs) has improved the survival of some patients with lung cancer. However, the majority of patients do not benefit from this treatment, making it essential to develop more reliable biomarkers to identify patients most likely to benefit. In this pilot study, the expression of transforming growth factor-ß (TGF-ß) in blood circulation and in extracellular vesicles was analyzed. The levels of extracellular vesicle TGF-ß before treatment were able to determine which patients would benefit from treatment with ICIs and have a longer survival with higher accuracy than circulating TGF-ß and tissue PD-L1, which is the currently used biomarker in clinical practice.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antígeno B7-H1 , Factor de Crecimiento Transformador beta , Proyectos Piloto , Inmunoterapia/métodos , Biomarcadores de Tumor , Vesículas Extracelulares/patología , Factores de Crecimiento Transformadores/uso terapéuticoRESUMEN
Poly(ADP ribose) polymerase inhibitors (PARPi) have efficacy in triple negative breast (TNBC) and ovarian cancers (OCs) harboring BRCA mutations, generating homologous recombination deficiencies (HRDs). DNA methyltransferase inhibitors (DNMTi) increase PARP trapping and reprogram the DNA damage response to generate HRD, sensitizing BRCA-proficient cancers to PARPi. We now define the mechanisms through which HRD is induced in BRCA-proficient TNBC and OC. DNMTi in combination with PARPi up-regulate broad innate immune and inflammasome-like signaling events, driven in part by stimulator of interferon genes (STING), to unexpectedly directly generate HRD. This inverse relationship between inflammation and DNA repair is critical, not only for the induced phenotype, but also appears as a widespread occurrence in The Cancer Genome Atlas datasets and cancer subtypes. These discerned interactions between inflammation signaling and DNA repair mechanisms now elucidate how epigenetic therapy enhances PARPi efficacy in the setting of BRCA-proficient cancer. This paradigm will be tested in a phase I/II TNBC clinical trial.
Asunto(s)
Recombinación Homóloga/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína BRCA1/genética , Proteína BRCA2/genética , Línea Celular Tumoral , Biología Computacional , Metilasas de Modificación del ADN/antagonistas & inhibidores , Reparación del ADN/efectos de los fármacos , Anemia de Fanconi/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interferones/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
XBP1 is a basic leucine zipper (bZIP) transcription factor and a key mediator of the endoplasmic reticulum (ER) stress-activated unfolded protein response (UPR). XBP1-mediated transcription facilitates cell adaptation to ER stress and also promotes tumor progression, while suppressing anti-tumor immunity. Here we report a novel XBP1 variant, namely XBP1 variant 1 (XBP1v1, Xv1 for short), that is specifically required for survival of cancer cells. Xv1 contains a cryptic first exon that is conserved only in humans and great apes. Comparing to XBP1, Xv1 encodes a protein with a different N-terminal sequence containing 25 amino acids. Analysis of RNAseq database reveals that Xv1 is broadly expressed across cancer types but almost none in normal tissues. Elevated Xv1 expression is associated with poor survival of patients with several types of cancer. Knockdown of Xv1 induces death of multiple cancer cell lines but has little effect on non-cancerous cells in vitro. Moreover, knockdown of Xv1 also inhibits growth of a xenograft breast tumor in mice. Together, our results indicate that Xv1 is essential for survival of cancer cells.
Asunto(s)
Variación Genética , Neoplasias/genética , Neoplasias/patología , Proteína 1 de Unión a la X-Box/genética , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Epidermal growth factor receptor (EGFR) plays an important role in head and neck squamous cell carcinoma (HNSCC) proliferation and therapy resistance, but the efficacy of targeting of EGFR for therapy has been limited. Here, we explore the molecular link between EGFR and inhibitor of κB kinase ß/nuclear factor-κB (IKKß/NF-κB) signalling pathways in the regulation of HNSCC EGFR inhibitor resistance. METHODS: We performed in vitro experiments in eight human HNSCC cell lines and a patient-derived HNSCC cell line as well as in vivo xenografts in a human HNSCC cell line. RESULTS: We found that treatment of all HNSCC cells with Gefitinib and Erlotinib, two Food Drug Administration-approved EGFR inhibitors, blocked the activity of Akt/mammalian target of the rapamycin (mTOR) and extracellular signal-regulated kinase, two crucial downstream effectors of EGFR, but up-regulated IKKß/NF-κB signalling. In addition, induction of IKKß/NF-κB by EGFR inhibitors required HER2 and HER3 expression. In keeping with these, IKKß inhibitor CmpdA synergistically enhanced the efficacy of EGFR inhibitors to further inhibit in vitro HNSCC cell growth. Importantly, we demonstrated that the combination of Gefitinib with CmpdA inhibited xenograft tumour formation. CONCLUSION: Our data demonstrated that co-targeting EGFR and IKKß with Gefitinib and IKKß inhibitors could provide a potential novel therapy for head and neck squamous cell cancer.
Asunto(s)
Quinasa I-kappa B/genética , Oxazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/administración & dosificación , Piridinas/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Clorhidrato de Erlotinib/administración & dosificación , Gefitinib/administración & dosificación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Ratones , FN-kappa B/genética , Oxazinas/farmacología , Inhibidores de Proteínas Quinasas/efectos adversos , Piridinas/farmacología , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Serina-Treonina Quinasas TOR/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: We investigated the role of the ETS-1 transcription factor in Head and Neck Squamous Cell Carcinoma (HNSCC) in multiple cisplatin-resistant HNSCC cell lines. METHODS: We examined its molecular link with SRC and MEK/ERK pathways and determined the efficacy of either MEK/ERK inhibitor PD0325901 or SRC inhibitor Dasatinib on cisplatin-resistant HNSCC inhibition. RESULTS: We found that ETS-1 protein expression levels in a majority of cisplatin-resistant HNSCC cell types were higher than those in their parental cisplatin sensitive partners. High ETS-1 expression was also found in patient-derived, cisplatin-resistant HNSCC cells. While ETS-1 knockdown inhibited cell proliferation, migration, and invasion, it could still re-sensitize cells to cisplatin treatment. Interestingly, previous studies have shown that MER/ERK pathways could regulate ETS-1 through its phosphorylation at threonine 38 (T38). Although almost all cisplatin-resistant HNSCC cells we tested showed higher ETS-1 phosphorylation levels at T38, we found that inhibition of MEK/ERK pathways with the MEK inhibitor PD0325901 did not block this phosphorylation. In addition, treatment of cisplatin-resistant HNSCC cells with the MEK inhibitor completely blocked ERK phosphorylation but did not re-sensitize cells to cisplatin treatment. Furthermore, we found that, consistent with ETS-1 increase, SRC phosphorylation dramatically increased in cisplatin-resistant HNSCC, and treatment of cells with the SRC inhibitor, Dasatinib, blocked SRC phosphorylation and decreased ETS-1 expression. Importantly, we showed that Dasatinib, as a single agent, significantly suppressed cell proliferation, migration, and invasion, in addition to survival. CONCLUSIONS: Our results demonstrate that the SRC/ETS-1 pathway plays a crucial role and could be a key therapeutic target in cisplatin-resistant HNSCC treatment.
Asunto(s)
Resistencia a Antineoplásicos , Neoplasias de Cabeza y Cuello/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Regulación hacia Arriba , Familia-src Quinasas/metabolismo , Benzamidas/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Dasatinib/farmacología , Difenilamina/análogos & derivados , Difenilamina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Acute myeloid leukemia (AML) is a neoplastic disorder resulting from clonal proliferation of poorly differentiated immature myeloid cells. Distinct genetic and epigenetic aberrations are key features of AML that account for its variable response to standard therapy. Irrespective of their oncogenic mutations, AML cells produce elevated levels of reactive oxygen species (ROS). They also alter expression and activity of antioxidant enzymes to promote cell proliferation and survival. Subsequently, selective targeting of redox homeostasis in a molecularly heterogeneous disease, such as AML, has been an appealing approach in the development of novel anti-leukemic chemotherapeutics. Naphthoquinones are able to undergo redox cycling and generate ROS in cancer cells, which have made them excellent candidates for testing against AML cells. In addition to inducing oxidative imbalance in AML cells, depending on their structure, naphthoquinones negatively affect other cellular apparatus causing neoplastic cell death. Here we provide an overview of the anti-AML activities of naphthoquinone derivatives, as well as analysis of their mechanism of action, including induction of reduction-oxidation imbalance, alteration in mitochondrial transmembrane potential, Bcl-2 modulation, initiation of DNA damage, and modulation of MAPK and STAT3 activity, alterations in the unfolded protein response and translocation of FOX-related transcription factors to the nucleus.
Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Naftoquinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Naftoquinonas/uso terapéuticoRESUMEN
The synthesis, characterization and antileukemic activity of rationally designed amino dimeric naphthoquinone (BiQ) possessing aziridine as alkylating moiety is described. Bis-aziridinyl BiQ decreased proliferation of acute myeloid leukemia (AML) cell lines and primary cells from patients, and exhibited potent (nanomolar) inhibition of colony formation and overall cell survival in AML cells. Effective production of reactive oxygen species (ROS) and double stranded DNA breaks (DSB) induced by bis-aziridinyl BiQ is reported. Bis-dimethylamine BiQ, as the isostere of bis-aziridinyl BiQ but without the alkylating moiety did not show as potent anti-AML activity. Systemic administration of bis-aziridinyl BiQ was well tolerated in NSG mice.
Asunto(s)
Antineoplásicos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Naftoquinonas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Estructura Molecular , Naftoquinonas/síntesis química , Naftoquinonas/química , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-ActividadRESUMEN
Described herein are our limited structure-activity relationship (SAR) studies on a 5:7-fused heterocycle (1), containing the 4,6,8-triaminoimidazo[4,5-e][1,3]diazepine ring system, whose synthesis and potent broad-spectrum anticancer activity we reported a few years ago. Our SAR efforts in this study are mainly focused on judicial attachment of substituents at N-1 and N(6)-positions of the heterocyclic ring. Our results suggest that there is some subtle correlation between the substituents attached at the N-1 position and those attached at the N(6)-position of the heterocycle. It is likely that there is a common hydrophobic binding pocket on the target protein that is occupied by the substituents attached at the N-1 and N(6)-positions of the heterocyclic ligand. This pocket appears to be large enough to hold either a C-18 alkyl chain of N(6) and no attachment at N-1, or a combined C-10 at N(6) and a CH2Ph at N-1. Any alkyl chain shorter or longer than C-10 at N(6) with a CH2Ph attached at N-1, would result in decrease of biological activity.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Azepinas/química , Azepinas/farmacología , Antineoplásicos/síntesis química , Azepinas/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Imidazoles/síntesis química , Imidazoles/química , Imidazoles/farmacología , Ligandos , Neoplasias/tratamiento farmacológico , Relación Estructura-ActividadRESUMEN
Mutations in IDH1 and IDH2 occur in 15-20% of AML cases, resulting in the production of 2-hydroxyglutarate, which promotes aberrant hypermethylation of DNA in leukemic cells. Although these mutations have been shown to have prognostic implications for patients with AML, optimal treatment strategies have yet to be defined. We retrospectively identified forty-two patients with AML treated with DNA methyltransferase inhibitors (DNMTIs) decitabine (n = 36) or azacitidine (n = 6) and performed analysis of stored samples for the presence of IDH1 and IDH2 mutations. Of the forty-two samples analyzed, seven (16.7%) had IDH mutations. Thirteen patients (31%) achieved remission [(complete remission (CR)/complete remission with incomplete count recovery (CRi)/partial response (PR)] after treatment with a DNMTI, five of seven (71.4%) with IDH mutations and eight of thirty-five (22.9%) without IDH mutations (P = 0.01). When adjusted for age at diagnosis, sex, bone marrow blast percentage and cytogenetic, the odds of achieving response after administration of a DNMTI among patients with an IDH mutation was 14.2 when compared to patients without an IDH mutation (95%CI: 1.3-150.4). IDH1 and IDH2 mutations may predict a favorable response to DNMTI in patients with AML.
Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Factores de Edad , Anciano , Azacitidina/análogos & derivados , Azacitidina/uso terapéutico , Metilasas de Modificación del ADN/antagonistas & inhibidores , Decitabina , Femenino , Genotipo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Oportunidad Relativa , Pronóstico , Inducción de Remisión , Estudios Retrospectivos , Factores SexualesRESUMEN
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy characterized by disrupted blood cell production and function. Recent investigations have highlighted the potential of targeting glutamine metabolism as a promising therapeutic approach for AML. Asparaginases, enzymes that deplete circulating glutamine and asparagine, are approved for the treatment of acute lymphoblastic leukemia, but are also under investigation in AML, with promising results. We previously reported an elevation in plasma serine levels following treatment with Erwinia-derived asparaginase (also called crisantaspase). This led us to hypothesize that AML cells initiate the de novo serine biosynthesis pathway in response to crisantaspase treatment and that inhibiting this pathway in combination with crisantaspase would enhance AML cell death. Here we report that in AML cell lines, treatment with the clinically available crisantaspase, Rylaze, upregulates the serine biosynthesis enzymes phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT1) through activation of the Amino Acid Response (AAR) pathway, a cellular stress response mechanism that regulates amino acid metabolism and protein synthesis under conditions of nutrient limitation. Inhibition of serine biosynthesis through CRISPR-Cas9-mediated knockout of PHGDH resulted in a ~250-fold reduction in the half-maximal inhibitory concentration (IC50) for Rylaze, indicating heightened sensitivity to crisantaspase therapy. Treatment of AML cells with a combination of Rylaze and a small molecule inhibitor of PHGDH (BI4916) revealed synergistic anti-proliferative effects in both cell lines and primary AML patient samples. Rylaze-BI4916 treatment in AML cell lines led to the inhibition of cap-dependent mRNA translation and protein synthesis, as well as a marked decrease in intracellular glutathione levels, a critical cellular antioxidant. Collectively, our results highlight the clinical potential of targeting serine biosynthesis in combination with crisantaspase as a novel therapeutic strategy for AML.
RESUMEN
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease without meaningful therapeutic options beyond the first salvage therapy. Targeting PDAC metabolism through amino acid restriction has emerged as a promising new strategy, with asparaginases, enzymes that deplete plasma glutamine and asparagine, reaching clinical trials. In this study, we investigated the anti-PDAC activity of the asparaginase formulation Pegcrisantaspase (PegC) alone and in combination with standard-of-care chemotherapeutics. METHODS: Using mouse and human PDAC cell lines, we assessed the impact of PegC on cell proliferation, cell death, and cell cycle progression. We further characterized the in vitro effect of PegC on protein synthesis as well as the generation of reactive oxygen species and levels of glutathione, a major cellular antioxidant. Additional cell line studies examined the effect of the combination of PegC with standard-of-care chemotherapeutics. In vivo, the tolerability and efficacy of PegC, as well as the impact on plasma amino acid levels, was assessed using the C57BL/6-derived KPC syngeneic mouse model. RESULTS: Here we report that PegC demonstrated potent anti-proliferative activity in a panel of human and murine PDAC cell lines. This decrease in proliferation was accompanied by inhibited protein synthesis and decreased levels of glutathione. In vivo, PegC was tolerable and effectively reduced plasma levels of glutamine and asparagine, leading to a statistically significant inhibition of tumor growth in a syngeneic mouse model of PDAC. There was no observable in vitro or in vivo benefit to combining PegC with standard-of-care chemotherapeutics, including oxaliplatin, irinotecan, 5-fluorouracil, paclitaxel, and gemcitabine. Notably, PegC treatment increased tumor expression of asparagine and serine biosynthetic enzymes. CONCLUSIONS: Taken together, our results demonstrate the potential therapeutic use of PegC in PDAC and highlight the importance of identifying candidates for combination regimens that could improve cytotoxicity and/or reduce the induction of resistance pathways.
RESUMEN
Judicial structural modifications of 5:7-fused ring-expanded nucleosides (RENs), based on molecular modeling studies with one of its known targets, human RNA helicase (hDDX3), led to the lead, novel, 5:7-5-fused tricyclic heterocycle (1). The latter exhibited promising broad-spectrum in vitro anti-cancer activity against a number of cancer cell lines screened. This paper describes our systematic, albeit limited, structure-activity relationship (SAR) studies on this lead compound, which produced a number of analogs with broad-spectrum in vitro anti-cancer activities against lung, breast, prostate, and ovarian cancer cell lines, in particular compounds 15i, 15j, 15m and 15n which showed IC(50) values in submicromolar to micromolar range, and are worthy of further explorations. The SAR data also enabled us to propose a tentative SAR model for future SAR efforts for ultimate realization of optimally active and minimally toxic anti-cancer compounds based on the diimidazo[4,5-d:4',5'-f][1,3]diazepine structural skeleton of the lead compound 1.
Asunto(s)
Antineoplásicos/farmacología , Azepinas/farmacología , Diseño de Fármacos , Antineoplásicos/síntesis química , Antineoplásicos/química , Azepinas/síntesis química , Azepinas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Modelos Moleculares , Estructura Molecular , Relación Estructura-ActividadRESUMEN
PURPOSE: We investigated the role of Wee1 kinase in cisplatin-resistant head and neck squamous cell carcinoma (HNSCC) in multiple cisplatin-resistant HNSCC cell lines and determined the efficacy of either Wee1 inhibitor, AZD1775 alone, or in combination with cisplatin, on cisplatin-resistant HNSCC inhibition. METHODS: Phosphorylation and total protein levels of cells were assessed by Western blot analysis. Cell viability and apoptosis were examined by MTS assay and flow cytometry, respectively. RESULTS: Wee1 kinase protein expression levels in five cisplatin-resistant HNSCC cell types were higher than those in their parental cisplatin-sensitive partners. Importantly, Wee1 knockdown inhibited cell proliferation and re-sensitized cells to cisplatin treatment. Interestingly, previous studies have also shown that Wee1 inhibitor AZD1775 synergizes with cisplatin to suppress cell proliferation of cisplatin-sensitive HNSCC. We found that AZD1775 inhibited both cisplatin-sensitive and resistant HNSCC with similar IC50 values, which suggested that AZD1775 could overcome cisplatin resistance in cisplatin-resistant HNSCC. Mechanistically, AZD1775 and cisplatin cooperatively induced DNA damage and apoptosis. CONCLUSION: Wee1 inhibitor, AZD1775, and cisplatin coordinately suppressed proliferation and survival of HNSCC.
Asunto(s)
Cisplatino , Neoplasias de Cabeza y Cuello , Apoptosis , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Proteínas Tirosina Quinasas , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológicoRESUMEN
The impact of asparaginases on plasma asparagine and glutamine is well established. However, the effect of asparaginases, particularly those derived from Erwinia chrysanthemi (also called crisantaspase), on circulating levels of other amino acids is unknown. We examined comprehensive plasma amino acid panel measurements in healthy immunodeficient/immunocompetent mice as well as in preclinical mouse models of acute myeloid leukemia (AML) and pancreatic ductal adenocarcinoma (PDAC) using long-acting crisantaspase, and in an AML clinical study (NCT02283190) using short-acting crisantaspase. In addition to the expected decrease of plasma glutamine and asparagine, we observed a significant increase in plasma serine and glycine post-crisantaspase. In PDAC tumors, crisantaspase treatment significantly increased expression of serine biosynthesis enzymes. We then systematically reviewed clinical studies using asparaginase products to determine the extent of plasma amino acid reporting and found that only plasma levels of glutamine/glutamate and asparagine/aspartate were reported, without measuring other amino acid changes post-asparaginase. To the best of our knowledge, we are the first to report comprehensive plasma amino acid changes in mice and humans treated with asparaginase. As dysregulated serine metabolism has been implicated in tumor development, our findings offer insights into how leukemia/cancer cells may potentially overcome glutamine/asparagine restriction, which can be used to design future synergistic therapeutic approaches.
RESUMEN
The clinical outcomes of patients with acute myeloid leukemia (AML) treated with available therapy remain unsatisfactory. We recently reported that the BCL-2 inhibitor venetoclax synergizes with pegcrisantaspase (Ven-PegC) and exhibits remarkable in vivo efficacy in a preclinical model of AML with complex karyotype. The Ven-PegC combination blocks synthesis of proteins in AML cells by inhibiting cap-dependent translation of mRNA. To further explore the impact of Ven-PegC on protein translation, we used polysome profiling and high-throughput RNA sequencing to characterize Ven-PegC-dependent changes to the translatome. Here we report that the translation of five mRNAs, including two microRNAs, one rRNA, and two mitochondrial genes, was altered after exposure to all three treatments (Ven, PegC, and Ven-PegC). We focused our translatome validation studies on six additional genes related to translational efficiency that were modified by Ven-PegC. Notably, Ven-PegC treatment increased the RNA translation and protein levels of Tribbles homologue 3 (TRIB3), eukaryotic translation initiation factor 3 subunit C (eIF3C), doublesex and mab-3-related transcription factor 1 (DMRT1), and salt-inducible kinase 1 (SIK1). We validated the observed changes in gene/protein expression in vitro and confirmed our cell line-based studies in the bone marrow of an AML patient-derived xenograft model after Ven-PegC treatment. These results support examining alterations in the translatome post chemotherapy to offer insight into the drug's mechanism of action and to inform future therapeutic decisions.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia Mieloide Aguda , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Sulfonamidas/farmacología , Sulfonamidas/uso terapéuticoRESUMEN
PURPOSE: Patients with acute myeloid leukemia (AML) unfit for, or resistant to, intensive chemotherapy are often treated with DNA methyltransferase inhibitors (DNMTi). Novel combinations may increase efficacy. In addition to demethylating CpG island gene promoter regions, DNMTis enhance PARP1 recruitment and tight binding to chromatin, preventing PARP-mediated DNA repair, downregulating homologous recombination (HR) DNA repair, and sensitizing cells to PARP inhibitor (PARPi). We previously demonstrated DNMTi and PARPi combination efficacy in AML in vitro and in vivo. Here, we report a phase I clinical trial combining the DNMTi decitabine and the PARPi talazoparib in relapsed/refractory AML. PATIENTS AND METHODS: Decitabine and talazoparib doses were escalated using a 3 + 3 design. Pharmacodynamic studies were performed on cycle 1 days 1 (pretreatment), 5 and 8 blood blasts. RESULTS: Doses were escalated in seven cohorts [25 patients, including 22 previously treated with DNMTi(s)] to a recommended phase II dose combination of decitabine 20 mg/m2 intravenously daily for 5 or 10 days and talazoparib 1 mg orally daily for 28 days, in 28-day cycles. Grade 3-5 events included fever in 19 patients and lung infections in 15, attributed to AML. Responses included complete remission with incomplete count recovery in two patients (8%) and hematologic improvement in three. Pharmacodynamic studies showed the expected DNA demethylation, increased PARP trapping in chromatin, increased γH2AX foci, and decreased HR activity in responders. γH2AX foci increased significantly with increasing talazoparib doses combined with 20 mg/m2 decitabine. CONCLUSIONS: Decitabine/talazoparib combination was well tolerated. Expected pharmacodynamic effects occurred, especially in responders.
Asunto(s)
Decitabina , Leucemia Mieloide Aguda , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina , ADN , Decitabina/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Metiltransferasas , Ftalazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéuticoRESUMEN
OBJECTIVES: To identify the most effective PI3K and EGFR inhibitors in HPV-positive head and neck squamous cell carcinoma (HNSCC) and investigate the efficacy of a combination of an ErbB family kinase inhibitor and a PI3K inhibitor to inhibit cell proliferation of HPV-positive HNSCC. MATERIALS AND METHOD: HPV-positive HNSCC cell lines were treated with the FDA approved ErbB kinase inhibitor, Afatinib or FDA-approved PI3K inhibitor, Copanlisib, alone or in combination, and phosphorylation and total protein levels of cells were assessed by Western blot analysis.Cell proliferation and apoptosis were examined by MTS assay, flow cytometry, and Western blots, respectively. RESULTS: Copanlisib more effectively inhibited cell proliferation in comparison to other PI3K inhibitors tested. HPV-positive HNSCC cells differentially responded to cisplatin, Afatinib, or Copanlisib. The combination of Afatinib and Copanlisib more effectively suppressed cell proliferation and induced apoptosis compared to either treatment alone. Mechanistically, the combination of Afatinib and Copanlisib completely blocked phosphorylation of EGFR, HER2, HER3, and Akt as well as significantly decreased the HPV E7 expression compared to either treatment alone. CONCLUSION: Afatinib and Copanlisib more effectively suppress cell proliferation and survival of HPV-positive HNSCC in comparison to either treatment alone.
Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Afatinib/farmacología , Afatinib/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Receptores ErbB/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológicoRESUMEN
BACKGROUND: Immune-checkpoint inhibitors (ICIs) changed the therapeutic landscape of patients with lung cancer. However, only a subset of them derived clinical benefit and evidenced the need to identify reliable predictive biomarkers. Liquid biopsy is the non-invasive and repeatable analysis of biological material in body fluids and a promising tool for cancer biomarkers discovery. In particular, there is growing evidence that extracellular vesicles (EVs) play an important role in tumor progression and in tumor-immune interactions. Thus, we evaluated whether extracellular vesicle PD-L1 expression could be used as a biomarker for prediction of durable treatment response and survival in patients with non-small cell lung cancer (NSCLC) undergoing treatment with ICIs. METHODS: Dynamic changes in EV PD-L1 were analyzed in plasma samples collected before and at 9 ± 1 weeks during treatment in a retrospective and a prospective independent cohorts of 33 and 39 patients, respectively. RESULTS: As a result, an increase in EV PD-L1 was observed in non-responders in comparison to responders and was an independent biomarker for shorter progression-free survival and overall survival. To the contrary, tissue PD-L1 expression, the commonly used biomarker, was not predictive neither for durable response nor survival. CONCLUSION: These findings indicate that EV PD-L1 dynamics could be used to stratify patients with advanced NSCLC who would experience durable benefit from ICIs.