Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 67(2): e0133122, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36700643

RESUMEN

Dengue virus (DENV) is a Flavivirus that causes the most prevalent arthropod-borne viral disease. Clinical manifestation of DENV infection ranges from asymptomatic to severe symptoms that can lead to death. Unfortunately, no antiviral treatments against DENV are currently available. In order to identify novel DENV inhibitors, we screened a library of 1,604 chemically diversified fragment-based compounds using DENV reporter viruses that allowed quantification of viral replication in infected cells. Following a validation screening, the two best inhibitor candidates were N-phenylpyridine-3-carboxamide (NPP3C) and 6-acetyl-1H-indazole (6A1HI). The half maximal effective concentration of NPP3C and 6A1H1 against DENV were 7.1 µM and 6.5 µM, respectively. 6A1H1 decreased infectious DENV particle production up to 1,000-fold without any cytotoxicity at the used concentrations. While 6A1HI was DENV-specific, NPP3C also inhibited the replication of other flaviviruses such as West Nile virus and Zika virus. Structure-activity relationship (SAR) studies with 151 analogues revealed key structural elements of NPP3C and 6A1HI required for their antiviral activity. Time-of-drug-addition experiments identified a postentry step as a target of these compounds. Consistently, using a DENV subgenomic replicon, we demonstrated that these compounds specifically impede the viral RNA replication step and exhibit a high genetic barrier-to-resistance. In contrast, viral RNA translation and the de novo biogenesis of DENV replication organelles were not affected. Overall, our data unveil NPP3C and 6A1H1 as novel DENV inhibitors. The information revealed by our SAR studies will help chemically optimize NPP3C and 6A1H1 in order to improve their anti-flaviviral potency and to challenge them in in vivo models.


Asunto(s)
Virus del Dengue , Dengue , Flavivirus , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Dengue/tratamiento farmacológico , Virus del Dengue/genética , Estadios del Ciclo de Vida , Replicación de ARN , ARN Viral/genética , Replicación Viral , Virus Zika/genética , ARN Subgenómico/genética
2.
Mol Pharm ; 20(8): 4031-4040, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37421372

RESUMEN

The free-state solution behaviors of small molecules profoundly affect their respective properties. It is becoming more obvious that compounds can adopt a three-phase equilibrium when placed in an aqueous solution, among soluble-lone molecule form, self-assembled aggregate form (nano-entities), and solid precipitate form. Recently, correlations have emerged between the existence of self-assemblies into drug nano-entities and unintended side effects. This report describes our pilot study involving a selection of drugs and dyes to explore if there may be a correlation between the existence of drug nano-entities and immune responses. We first implement practical strategies for detecting the drug self-assemblies using a combination of nuclear magnetic resonance (NMR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and confocal microscopy. We then used enzyme-linked immunosorbent assays (ELISA) to monitor the modulation of immune responses on two cellular models, murine macrophage and human neutrophils, upon exposure to the drugs and dyes. The results suggest that exposure to some aggregates correlated with an increase in IL-8 and TNF-α in these model systems. Given this pilot study, further correlations merit pursuing on a larger scale given the importance and potential impact of drug-induced immune-related side effects.


Asunto(s)
Colorantes , Agua , Animales , Humanos , Ratones , Proyectos Piloto , Agua/química , Espectroscopía de Resonancia Magnética , Inmunidad
3.
Bioorg Med Chem Lett ; 95: 129488, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37770003

RESUMEN

The Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers. Flufenamic acid (FA) was reported to bind in a liphophilic TEAD palmitic acid (PA) pocket, leading to reduction of the expression of Axl and NF2. Here, we show that the replacement of the trifluoromethyl moiety in FA by aromatic groups, directly connected to the scaffold or separated by a linker, leads to compounds with better affinity to TEAD. Co-crystallization studies show that these compounds bind similarly to FA, but deeper within the PA pocket. Our studies identified LM-41 and AF-2112 as two TEAD binders that strongly reduce the expression of CTGF, Cyr61, Axl and NF2. LM-41 gave the strongest reduction of migration of human MDA-MB-231 breast cancer cells.


Asunto(s)
Ácido Flufenámico , Neoplasias , Humanos , Ácido Flufenámico/farmacología , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Vía de Señalización Hippo , Neoplasias/genética
4.
Arch Toxicol ; 96(9): 2559-2572, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35666269

RESUMEN

The misuse of novichok agents in assassination attempts has been reported in the international media since 2018. These relatively new class of neurotoxic agents is claimed to be more toxic than the agents of the G and V series and so far, there is no report yet in literature about potential antidotes against them. To shed some light into this issue, we report here the design and synthesis of NTMGMP, a surrogate of A-242 and also the first surrogate of a novichok agent useful for experimental evaluation of antidotes. Furthermore, the efficiency of the current commercial oximes to reactivate NTMGMP-inhibited acetylcholinesterase (AChE) was evaluated. The Ellman test was used to confirm the complete inhibition of AChE, and to compare the subsequent rates of reactivation in vitro as well as to evaluate aging. In parallel, molecular docking, molecular dynamics and MM-PBSA studies were performed on a computational model of the human AChE (HssAChE)/NTMGMP complex to assess the reactivation performances of the commercial oximes in silico. Experimental and theoretical studies matched the exact hierarchy of efficiency and pointed to trimedoxime as the most promising commercial oxime for reactivation of AChE inhibited by A-242.


Asunto(s)
Reactivadores de la Colinesterasa , Agentes Nerviosos , Acetilcolinesterasa , Antídotos/farmacología , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/farmacología , Humanos , Simulación del Acoplamiento Molecular , Agentes Nerviosos/toxicidad , Oximas/farmacología
5.
Artículo en Inglés | MEDLINE | ID: mdl-33168608

RESUMEN

Neisseria meningitidis and Neisseria gonorrhoeae, two highly related species that might have emerged from a common commensal ancestor, constitute major human threats. Vaccines are available to prevent N. meningitidis infection, whereas there are only a limited number of antibiotics available for N. gonorrhoeae Unfortunately, some strains of these species are rapidly evolving and capable of escaping human interventions. Thus, it is now urgent to develop new avenues to fight these bacteria. This study reports that a boron-based salt, sodium tetraphenylborate (NaBPh4), displays high bactericidal activity and remarkable specificity against N. meningitidis and N. gonorrhoeae Other closely related commensal species such as Neisseria lactamica, which is found in the normal flora of healthy individuals, were found to be less affected even at 5-fold higher doses of NaBPh4 This specificity was further observed when much lower sensitivity was found for more distant Neisseriaceae species (such as Neisseria elongata or Kingella oralis) and completely unrelated species. Significant boron uptake by N. meningitidis cells was observed after incubation with 5 µM NaBPh4, as measured by inductively coupled plasma mass spectrometry, suggesting that this drug candidate's target(s) could be located intracellularly or within the cell envelope. Furthermore, mutants with slightly decreased susceptibility displayed alterations in genes coding for cell envelope elements, which reduced their virulence in an animal model of infection. Finally, a single dose of NaBPh4 resulted in a significant reduction in bacterial burden in a mouse model of N. meningitidis bacteremia. Although numerous boron-containing species were previously reported for their complex biological activities, the observation of this narrow selectivity is unprecedented and of potential importance from a therapeutic standpoint.


Asunto(s)
Infecciones Bacterianas , Neisseria meningitidis , Animales , Kingella , Neisseria gonorrhoeae , Neisseria meningitidis/genética , Tetrafenilborato
6.
Bioorg Med Chem Lett ; 29(6): 826-831, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30704813

RESUMEN

DNA methylation is an epigenetic modification that is performed by DNA methyltransferases (DNMTs) and that leads to the transfer of a methyl group from S-adenosylmethionine (SAM) to the C5 position of cytosine. This transformation results in hypermethylation and silencing of genes such as tumor suppressor genes. Aberrant DNA methylation has been associated with the development of many diseases, including cancer. Inhibition of DNMTs promotes the demethylation and reactivation of epigenetically silenced genes. NSC 106084 and 14778 have been reported to inhibit DNMTs in the micromolar range. We report herein the synthesis of NSC 106084 and 14778 and the evaluation of their DNMT inhibitory activity. Our results indicate that while commercial NSC 14778 is moderately active against DNMT1, 3A/3L and 3B/3L, resynthesized NSC 14778 is inactive under our assay conditions. Resynthesized 106084 was also found to be inactive.


Asunto(s)
Acetatos/química , Compuestos de Bencidrilo/química , Benzofenonas/química , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Salicilatos/química , Acetatos/síntesis química , Compuestos de Bencidrilo/síntesis química , Benzofenonas/síntesis química , Pruebas de Enzimas , Inhibidores Enzimáticos/síntesis química , Salicilatos/síntesis química
7.
Bioorg Med Chem Lett ; 27(2): 242-247, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913183

RESUMEN

Central to drug discovery is the correct characterization of the primary structures of compounds. In general, medicinal chemists make great synthetic and characterization efforts to deliver the intended compounds. However, there are occasions which incorrect compounds are presented, such as those reported for Bosutinib and TIC10. This may be due to a variety of reasons such as uncontrolled reaction schemes, reliance on limited characterization techniques (LC-MS and/or 1D 1H NMR spectra), or even the lack of availability or knowledge of characterization strategies. Here, we present practical NMR approaches that support medicinal chemist workflows for addressing compound characterization issues and allow for reliable primary structure determinations. These strategies serve to differentiate between regioisomers and geometric isomers, distinguish between N- versus O-alkyl analogues, and identify rotamers and atropisomers. Overall, awareness and application of these available NMR methods (e.g. HMBC/HSQC, ROESY and VT experiments, to name only a few) should help practicing chemists to reveal chemical phenomena and avoid mis-assignment of the primary structures of compounds.


Asunto(s)
Compuestos de Anilina/química , Nitrilos/química , Quinolinas/química , Química Farmacéutica , Espectroscopía de Resonancia Magnética , Estructura Molecular , Estereoisomerismo
8.
Bioorg Med Chem Lett ; 25(5): 1140-5, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25599836

RESUMEN

We describe our efforts to identify analogs of thumb pocket 1 HCV NS5B inhibitor 1 (aza-analog of BI 207524) with improved plasma to liver partitioning and a predicted human half-life consistent with achieving a strong antiviral effect at a reasonable dose in HCV-infected patients. Compounds 3 and 7 were identified that met these criteria but exhibited off-target promiscuity in an in vitro pharmacology screen and in vivo toxicity in rats. High lipophilicity in this class was found to correlate with increased probability for promiscuous behavior and toxicity. The synthesis of an 8×11 matrix of analogs allowed the identification of C3, an inhibitor that displayed comparable potency to 1, improved partitioning to the liver and reduced lipophilicity. Although C3 displayed reduced propensity for in vitro off-target inhibition and the toxicity profile in rats was improved, the predicted human half-life of this compound was short, resulting in unacceptable dosing requirements to maintain a strong antiviral effect in patients.


Asunto(s)
Acrilatos/química , Acrilatos/farmacología , Antivirales/química , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Indoles/química , Indoles/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Acrilatos/farmacocinética , Acrilatos/toxicidad , Animales , Antivirales/farmacocinética , Antivirales/toxicidad , Perros , Haplorrinos , Hepatitis C/tratamiento farmacológico , Hepatitis C/virología , Humanos , Indoles/farmacocinética , Indoles/toxicidad , Lípidos/química , Hígado/metabolismo , Hígado/virología , Ratas , Proteínas no Estructurales Virales/metabolismo
9.
Antimicrob Agents Chemother ; 58(6): 3233-44, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24663024

RESUMEN

BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3'-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 µM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.


Asunto(s)
Inhibidores de Integrasa VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/enzimología , Sustitución de Aminoácidos/genética , Sustitución de Aminoácidos/fisiología , Animales , Fármacos Anti-VIH/farmacología , Células CACO-2 , Clonación Molecular , Inhibidores Enzimáticos del Citocromo P-450/farmacología , ADN Viral/efectos de los fármacos , Farmacorresistencia Viral , Integrasa de VIH/biosíntesis , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/metabolismo , Inhibidores de Integrasa VIH/farmacocinética , Hepatocitos/metabolismo , Humanos , Ratones , Ratas , Suero/virología , Replicación Viral/efectos de los fármacos
10.
Microbes Infect ; : 105297, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38199267

RESUMEN

Small molecule drugs have an important role to play in combating viral infections, and biophysics support has been central for contributing to the discovery and design of direct acting antivirals. Perhaps one of the most successful biophysical tools for this purpose is NMR spectroscopy when utilized strategically and pragmatically within team workflows and timelines. This report describes some clear examples of how NMR applications contributed to the design of antivirals when combined with medicinal chemistry, biochemistry, X-ray crystallography and computational chemistry. Overall, these multidisciplinary approaches allowed teams to reveal and expose compound physical properties from which design ideas were spawned and tested to achieve the desired successes. Examples are discussed for the discovery of antivirals that target HCV, HIV and SARS-CoV-2.

11.
Mini Rev Med Chem ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38350844

RESUMEN

The castor plant (Ricinus communis) is primarily known for its seeds, which contain a unique fatty acid called ricinoleic acid with several industrial and commercial applications. Castor seeds also contain ricin, a toxin considered a chemical and biological warfare agent. Despite years of investigation, there is still no effective antidote or vaccine available. However, some progress has been made, and the development of an effective treatment may be on the horizon. To provide an updated overview of this issue, we have conducted a comprehensive review of the literature on the current state of research in the fight against ricin. This mini-review is based on the reported research and aims to address the challenges faced by researchers, as well as highlight the most successful cases achieved thus far. Our goal is to encourage the scientific community to continue their efforts in this critical search.

12.
ACS Omega ; 9(11): 13217-13226, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38524450

RESUMEN

Recent advances in iterative neural network analyses (e.g., AlphaFold2 and RoseTTA fold) have been revolutionary for protein 3D structure prediction, especially for difficult-to-manipulate α-helical/ß-barrel integral membrane proteins. These model structures are calculated based on the coevolution of amino acids within the protein of interest and similarities to existing protein structures; the local effects of the membrane on folding and stability of the calculated model structures are not considered. We recently reported the discovery, 3D modeling, and characterization of 18-ß-stranded outer-membrane (OM) WzpX, WzpS, and WzpB ß-barrel secretion porins for the exopolysaccharide (EPS), major spore coat polysaccharide (MASC), and biosurfactant polysaccharide (BPS) pathways (respectively) in the Gram-negative social predatory bacterium Myxococcus xanthus DZ2. However, information was not obtained regarding the dynamic behavior of surface-gating WzpX/S/B loop domains or on potential treatments to inactivate these porins. Herein, we developed a molecular dynamics (MD) protocol to study the core stability and loop dynamism of neural network-based integral membrane protein structure models embedded in an asymmetric OM bilayer, using the M. xanthus WzpX, WzpS, and WzpB proteins as test candidates. This was accomplished through integration of the CHARMM-graphical user interface (GUI) and Molecular Operating Environment (MOE) workflows to allow for a rapid simulation system setup and facilitate data analysis. In addition to serving as a method of model structure validation, our molecular dynamics simulations revealed a minimal movement of extracellular WzpX/S/B loops in the absence of an external stimulus as well as druggable cavities between the loops. Virtual screening of a commercial fragment library against these cavities revealed putative fragment-binding hotspots on the cell-surface face of each ß-barrel, along with key interacting residues, and identified promising hits for the design of potential binders capable of plugging the ß-barrels and inhibiting polysaccharide secretion.

13.
Nat Commun ; 15(1): 4175, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755132

RESUMEN

Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Análisis de la Célula Individual , Tuberculosis , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Análisis de la Célula Individual/métodos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Microfluídica/métodos , Fenotipo , Descubrimiento de Drogas/métodos , Sinergismo Farmacológico
14.
Bioorg Med Chem Lett ; 23(16): 4663-8, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23809849

RESUMEN

A classic synthetic issue that remains unresolved is the reaction that involves the control of N- versus O-alkylation of ambident anions. This common chemical transformation is important for medicinal chemists, who require predictable and reliable protocols for the rapid synthesis of inhibitors. The uncertainty of whether the product(s) are N- and/or O-alkylated is common and can be costly if undetermined. Herein, we report an NMR-based strategy that focuses on distinguishing inhibitors and intermediates that are N- or O-alkylated. The NMR strategy involves three independent and complementary methods. However, any combination of two of the methods can be reliable if the third were compromised due to resonance overlap or other issues. The timely nature of these methods (HSQC/HMQC, HMBC. ROESY, and (13)C shift predictions) allows for contemporaneous determination of regioselective alkylation as needed during the optimization of synthetic routes.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Espectroscopía de Resonancia Magnética , Nitrógeno/química , Oxígeno/química , Alquilación , Cristalografía por Rayos X , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Humanos , Concentración 50 Inhibidora , Estructura Molecular
15.
Bioorg Med Chem Lett ; 23(24): 6879-85, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24176401

RESUMEN

Optimization efforts on the anthranilic acid-based Thumb Pocket 2 HCV NS5B polymerase inhibitors 1 and 2 resulted in the identification of multiple structural elements that contributed to improved cell culture potency. The additive effect of these elements resulted in compound 46, an inhibitor with enzymatic (IC50) and cell culture (EC50) potencies of less than 100 nanomolar.


Asunto(s)
Antivirales/química , Inhibidores Enzimáticos/química , Hepacivirus/enzimología , Proteínas no Estructurales Virales/antagonistas & inhibidores , ortoaminobenzoatos/química , Antivirales/síntesis química , Antivirales/farmacología , Sitios de Unión , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , ortoaminobenzoatos/síntesis química , ortoaminobenzoatos/farmacología
16.
Bioorg Med Chem Lett ; 23(9): 2775-80, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23511023

RESUMEN

Screening of our sample collection led to the identification of a set of benzofurano[3,2-d]pyrimidine-2-one hits acting as nucleotide-competing HIV-1 reverse transcriptase inhibitiors (NcRTI). Significant improvement in antiviral potency was achieved when substituents were introduced at positions N1, C4, C7 and C8 on the benzofuranopyrimidone scaffold. The series was optimized from low micromolar enzymatic activity against HIV-1 RT and no antiviral activity to low nanomolar antiviral potency. Further profiling of inhibitor 30 showed promising overall in vitro properties and also demonstrated that its potency was maintained against viruses resistant to the other major classes of HIV-1 RT inhibitors.


Asunto(s)
Benzofuranos/química , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Nucleótidos/química , Pirimidinonas/química , Inhibidores de la Transcriptasa Inversa/química , Animales , Transcriptasa Inversa del VIH/metabolismo , VIH-1/efectos de los fármacos , VIH-1/enzimología , Humanos , Microsomas Hepáticos/metabolismo , Nucleótidos/metabolismo , Unión Proteica , Pirimidinonas/síntesis química , Pirimidinonas/farmacología , Ratas , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/farmacología , Relación Estructura-Actividad
17.
Chem Biol Interact ; 382: 110622, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442286

RESUMEN

The A-series is the most recent generation of chemical warfare nerve agents (CWA) which act directly on the inhibition of the human acetylcholinesterase (HssAChE) enzyme. These compounds lack accurate experimental data on their physicochemical properties, and there is no evidence that traditional antidotes effectively reactivate HssAChE inhibited by them. In the search for potential antidotes, we employed virtual screening, molecular docking, and molecular dynamics (MD) simulations for the theoretical assessment of the performance of a library of Mannich phenols as potential reactivators of HssAChE inhibited by the Novichok agents A-230, A-232, and A-234, in comparison with the commercial oximes pralidoxime (2-PAM), asoxime (HI-6), trimedoxime (TMB-4), and obidoxime. Following the near-attack conformation (NAC) approach, our results suggest that the compounds assessed would face difficulties in triggering the proposed nucleophilic in-line displacement mechanism. Despite this, it was observed that certain Mannich phenols presented similar or superior results to those obtained by reference oximes against A-232 and A-234 model, suggesting that these compounds can adopt more favourable conformations. Additional binding energy calculations confirmed the stability of the model/ligands complexes and the reactivating potential observed in the molecular docking and MD studies. Our findings indicate that the Mannich phenols could be alternative antidotes and that their efficacy should be evaluated experimentally against the A-series CWA.


Asunto(s)
Sustancias para la Guerra Química , Reactivadores de la Colinesterasa , Agentes Nerviosos , Humanos , Antídotos/farmacología , Reactivadores de la Colinesterasa/farmacología , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Oximas/farmacología , Oximas/química , Trimedoxima/química , Trimedoxima/farmacología , Sustancias para la Guerra Química/farmacología , Compuestos de Piridinio/farmacología
18.
ACS Omega ; 8(29): 25832-25838, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521620

RESUMEN

Macrocyclic peptidomimetics have been seriously contributing to our arsenal of drugs to combat diseases. The search for nature's discoveries led us to mortiamides A-D (found in a novel fungus from Northern Canada), which is a family of cyclic peptides that clearly have demonstrated impressive pharmaceutical potential. This prompted us to learn more about their solution-state properties as these are central for binding to target molecules. Here, we secured and isolated mortiamide D, and then acquired high-resolution nuclear magnetic resonance (NMR) data to learn more about its structure and dynamics attributes. Sets of two-dimensional NMR experiments provided atomic-level (through-bond and through-space) data to confirm the primary structure, and NMR-driven molecular dynamics (MD) simulations suggested that more than one predominant three-dimensional (3D) structure exist in solution. Further steps of MD simulations are consistent with the finding that the backbones of mortiamides A-C also have at least two prominent macrocyclic shapes, but the side-chain structures and dynamics differed significantly. Knowledge of these solution properties can be exploited for drug design and discovery.

19.
J Biomol Struct Dyn ; 41(22): 13348-13367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744449

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 virus has created a global damage and has exposed the vulnerable side of scientific research towards novel diseases. The intensity of the pandemic is huge, with mortality rates of more than 6 million people worldwide in a span of 2 years. Considering the gravity of the situation, scientists all across the world are continuously attempting to create successful therapeutic solutions to combat the virus. Various vaccination strategies are being devised to ensure effective immunization against SARS-CoV-2 infection. SARS-CoV-2 spreads very rapidly, and the infection rate is remarkably high than other respiratory tract viruses. The viral entry and recognition of the host cell is facilitated by S protein of the virus. N protein along with NSP3 is majorly responsible for viral genome assembly and NSP12 performs polymerase activity for RNA synthesis. In this study, we have designed a multi-epitope, chimeric vaccine considering the two structural (S and N protein) and two non-structural proteins (NSP3 and NSP12) of SARS-CoV-2 virus. The aim is to induce immune response by generating antibodies against these proteins to target the viral entry and viral replication in the host cell. In this study, computational tools were used, and the reliability of the vaccine was verified using molecular docking, molecular dynamics simulation and immune simulation studies in silico. These studies demonstrate that the vaccine designed shows steady interaction with Toll like receptors with good stability and will be effective in inducing a strong and specific immune response in the body.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2/metabolismo , COVID-19/prevención & control , Vacunas contra la COVID-19 , Simulación del Acoplamiento Molecular , Pandemias/prevención & control , Reproducibilidad de los Resultados , Vacunas Virales/química , Epítopos de Linfocito B
20.
J Med Chem ; 66(19): 13416-13427, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37732695

RESUMEN

Establishing robust structure-activity relationships (SARs) is key to successful drug discovery campaigns, yet it often remains elusive due to screening and hit validation artifacts (false positives and false negatives), which frequently result in unproductive downstream expenditures of time and resources. To address this issue, we developed an integrative biophysics-driven strategy that expedites hit-to-lead discovery, mitigates false positives/negatives and common hit validation errors, and provides a robust approach to obtaining accurate binding and affinity measurements. The advantage of this method is that it vastly improves the clarity and reproducibility for affinity-driven SAR by monitoring and eliminating confounding factors. We demonstrate the ease at which high-quality micromolar binders can be generated from the initial millimolar fragment screening hits against an "undruggable" protein target, HRas.


Asunto(s)
Descubrimiento de Drogas , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Espectroscopía de Resonancia Magnética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA