Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Chem Rev ; 122(16): 13207-13234, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35926147

RESUMEN

The chemical reactions underlying the emission of light in fireflies and other bioluminescent beetles are some of the most thoroughly studied processes by scientists worldwide. Despite these remarkable efforts, fierce academic arguments continue around even some of the most fundamental aspects of the reaction mechanism behind the beetle bioluminescence. In an attempt to reach a consensus, we made an exhaustive search of the available literature and compiled the key discoveries on the fluorescence and chemiluminescence spectrochemistry of the emitting molecule, the firefly oxyluciferin, and its chemical analogues reported over the past 50+ years. The factors that affect the light emission, including intermolecular interactions, solvent polarity, and electronic effects, were analyzed in the context of both the reaction mechanism and the different colors of light emitted by different luciferases. The collective data points toward a combined emission of multiple coexistent forms of oxyluciferin as the most probable explanation for the variation in color of the emitted light. We also highlight realistic research directions to eventually address some of the remaining questions related to firefly bioluminescence. It is our hope that this extensive compilation of data and detailed analysis will not only consolidate the existing body of knowledge on this important phenomenon but will also aid in reaching a wider consensus on some of the mechanistic details of firefly bioluminescence.


Asunto(s)
Escarabajos , Luciérnagas , Animales , Escarabajos/química , Luciérnagas/química , Luciferasas/química , Luminiscencia , Mediciones Luminiscentes
2.
Opt Express ; 31(11): 18290-18299, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37381542

RESUMEN

Stimulated Raman scattering (SRS) microscopy is increasingly employed for highly specific, label-free, and high-speed bioimaging. Despite its benefits, SRS is susceptible to spurious background signals caused by competing effects, which lower the possible imaging contrast and sensitivity. An efficient approach to suppress these undesired background signals is frequency-modulation (FM) SRS, which exploits the competing effects' weak spectral dependence compared to the SRS signal's high spectral specificity. We propose an FM-SRS scheme realized with an acousto-optic tunable filter, which presents a few advantages compared to other solutions presented in the literature. In particular, it can perform automated measurements from the fingerprint to the CH-stretching region of the vibrational spectrum without any manual adjustment of the optical setup. Moreover, it allows simple all-electronic control of the spectral separation and relative intensities of the pair of probed wavenumbers.

3.
Opt Express ; 29(2): 2378-2386, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726433

RESUMEN

We present a novel configuration for high spectral resolution multiplexing acquisition based on the Hadamard transform in stimulated Raman scattering (SRS) microscopy. The broadband tunable output of a dual-beam femtosecond laser is filtered by a fast, narrowband, and multi-channel acousto-optic tunable filter (AOTF). By turning on and off different subsets of its 8 independent channels, the AOTF generates the spectral masks given by the Hadamard matrix. We demonstrate a seamless and automated operation in the Raman fingerprint and CH-stretch regions. In the presence of additive noise, the spectral measurements using the multiplexed method show the same signal-to-noise ratio of conventional single-wavenumber acquisitions performed with 4 times longer integration time.

4.
Biochemistry ; 57(5): 620-630, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29239168

RESUMEN

The light, oxygen, voltage (LOV) domain proteins are blue light photoreceptors that utilize a noncovalently bound flavin mononucleotide (FMN) cofactor as the chromophore. The modular nature of these proteins has led to their wide adoption in the emerging fields of optogenetics and optobiology, where the LOV domain has been fused to a variety of output domains leading to novel light-controlled applications. In this work, we extend our studies of the subpicosecond to several hundred microsecond transient infrared spectroscopy of the isolated LOV domain AsLOV2 to three full-length photoreceptors in which the LOV domain is fused to an output domain: the LOV-STAS protein, YtvA, the LOV-HTH transcription factor, EL222, and the LOV-histidine kinase, LovK. Despite differences in tertiary structure, the overall pathway leading to cysteine adduct formation from the FMN triplet state is highly conserved, although there are slight variations in rate. However, significant differences are observed in the vibrational spectra and kinetics after adduct formation, which are directly linked to the specific output function of the LOV domain. While the rate of adduct formation varies by only 3.6-fold among the proteins, the subsequent large-scale structural changes in the full-length LOV photoreceptors occur over the micro- to submillisecond time scales and vary by orders of magnitude depending on the different output function of each LOV domain.


Asunto(s)
Fotorreceptores Microbianos/efectos de la radiación , Fotorreceptores de Plantas/efectos de la radiación , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sitios de Unión , Cristalografía por Rayos X , Cisteína/química , Mononucleótido de Flavina/química , Enlace de Hidrógeno , Modelos Moleculares , Fotoblanqueo , Fotoquímica , Fotorreceptores Microbianos/química , Fotorreceptores de Plantas/química , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/efectos de la radiación , Técnica de Sustracción
5.
Angew Chem Int Ed Engl ; 57(30): 9538-9542, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29855133

RESUMEN

A bioinspired fluorophore that is analogous to the substrate in the bioluminescence of fireflies was prepared and reacts when exposed to weak blue LED light. Upon excitation, this material is photodecarboxylated with a nearly 81-fold enhancement of the solid-state emission, the fluorescence quantum yield of the product in solution is approximately 90 %, and violent disintegrative effects occur as a result of the release of carbon dioxide. Crystallographic and computational results, together with global spectral analysis of the kinetics, confirmed that most of the emission observed in the decay-associated spectra is intrinsic to the product molecule, with only a minor contribution from an excimer through π-π stacking of the molecules in the crystal.

6.
J Am Chem Soc ; 139(41): 14638-14648, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28876066

RESUMEN

The flavin chromophore in blue-light-using FAD (BLUF) photoreceptors is surrounded by a hydrogen bond network that senses and responds to changes in the electronic structure of the flavin on the ultrafast time scale. The hydrogen bond network includes a strictly conserved Tyr residue, and previously we explored the role of this residue, Y21, in the photoactivation mechanism of the BLUF protein AppABLUF by the introduction of fluorotyrosine (F-Tyr) analogues that modulated the pKa and reduction potential of Y21 by 3.5 pH units and 200 mV, respectively. Although little impact on the forward (dark- to light-adapted form) photoreaction was observed, the change in Y21 pKa led to a 4000-fold increase in the rate of dark-state recovery. In the present work we have extended these studies to the BLUF protein PixD, where, in contrast to AppABLUF, modulation in the Tyr (Y8) pKa has a profound impact on the forward photoreaction. In particular, a decrease in Y8 pKa by 2 or more pH units prevents formation of a stable light state, consistent with a photoactivation mechanism that involves proton transfer or proton-coupled electron transfer from Y8 to the electronically excited FAD. Conversely, the effect of pKa on the rate of dark recovery is markedly reduced in PixD. These observations highlight very significant differences between the photocycles of PixD and AppABLUF, despite their sharing highly conserved FAD binding architectures.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/efectos de la radiación , Flavoproteínas/metabolismo , Flavoproteínas/efectos de la radiación , Flúor/metabolismo , Luz , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/efectos de la radiación , Tirosina/metabolismo , Sitios de Unión , Color , Transporte de Electrón , Flavina-Adenina Dinucleótido/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Dominios Proteicos , Protones , Synechocystis/química
7.
J Phys Chem A ; 121(10): 2138-2150, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28218530

RESUMEN

Photochemically driven molecular motors convert the energy of incident radiation to intramolecular rotational motion. The motor molecules considered here execute four step unidirectional rotational motion. This comprises a pair of successive light induced isomerizations to a metastable state followed by thermal helix inversions. The internal rotation of a large molecular unit required in these steps is expected to be sensitive to both the viscosity of the medium and the volume of the rotating unit. In this work, we describe a study of motor motion in both ground and excited states as a function of the size of the rotating units. The excited state decay is ultrafast, highly non-single exponential, and is best described by a sum of three exponential relaxation components. The average excited state decay time observed for a series of motors with substituents of increasing volume was determined. While substitution does affect the lifetime, the size of the substituent has only a minor effect. The solvent polarity dependence is also slight, but there is a significant solvent viscosity effect. Increasing the viscosity has no effect on the fastest of the three decay components, but it does lengthen the two slower decay times, consistent with them being associated with motion along an intramolecular coordinate displacing a large solvent volume. However, these slower relaxation times are again not a function of the size of the substituent. We conclude that excited state decay arises from motion along a coordinate which does not necessarily require complete rotation of the substituents through the solvent, but is instead more localized in the core structure of the motor. The decay of the metastable state to the ground state through a helix inversion occurs 14 orders of magnitude more slowly than the excited state decay, and was measured as a function of substituent size, solvent viscosity and temperature. In this case neither substituent size nor solvent viscosity influences the rate, which is entirely determined by the activation barrier. This result is different to similar studies of an earlier generation of molecular motors, which suggests different microscopic mechanisms are in operation in the different generations. Finally, the rate of photochemical isomerization was studied for the series of motors, and those with the largest volume substituents showed the highest photochemical cross section.

8.
J Am Chem Soc ; 138(50): 16252-16258, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27998082

RESUMEN

The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time-resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH-dependent emission to a single chemical species would be an oversimplification.


Asunto(s)
Indoles/química , Indoles/metabolismo , Luciferasas de Luciérnaga/metabolismo , Pirazinas/química , Pirazinas/metabolismo , Dominio Catalítico , Modelos Moleculares
9.
J Am Chem Soc ; 138(3): 926-935, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26708408

RESUMEN

The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity. Here, we directly explore the effect of the Y21 pKa on dark state recovery by replacing Y21 with fluorotyrosine analogues that increase the acidity of Y21 by 3.5 pH units. Ultrafast transient infrared measurements confirm that the structure of AppA is unperturbed by fluorotyrosine substitution, and that there is a small (3-fold) change in the photokinetics of the forward reaction over the fluorotyrosine series. However, reduction of 3.5 pH units in the pKa of Y21 increases the rate of dark state recovery by 4000-fold with a Brønsted coefficient of ∼ 1, indicating that the Y21 proton is completely transferred in the transition state leading from light to dark adapted AppA. A large solvent isotope effect of ∼ 6-8 is also observed on the rate of dark state recovery. These data establish that the acidity of Y21 is a crucial factor for stabilizing the light activated form of the protein, and have been used to propose a model for dark state recovery that will ultimately prove useful for tuning the properties of BLUF photosensors for optogenetic applications.


Asunto(s)
Proteínas Bacterianas/química , Flavoproteínas/química , Flúor/química , Procesos Fotoquímicos , Teoría Cuántica , Tirosina/análogos & derivados , Tirosina/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Molecular
10.
Proc Natl Acad Sci U S A ; 110(22): 8924-9, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23671075

RESUMEN

In many bacteria the flavoenzyme thymidylate synthase ThyX produces the DNA nucleotide deoxythymidine monophosphate from dUMP, using methylenetetrahydrofolate as carbon donor and NADPH as hydride donor. Because all three substrates bind in close proximity to the catalytic flavin adenine dinucleotide group, substantial flexibility of the ThyX active site has been hypothesized. Using femtosecond time-resolved fluorescence spectroscopy, we have studied the conformational heterogeneity and the conformational interconversion dynamics in real time in ThyX from the hyperthermophilic bacterium Thermotoga maritima. The dynamics of electron transfer to excited flavin adenine dinucleotide from a neighboring tyrosine residue are used as a sensitive probe of the functional dynamics of the active site. The fluorescence decay spanned a full three orders of magnitude, demonstrating a very wide range of conformations. In particular, at physiological temperatures, multiple angstrom cofactor-residue displacements occur on the picoseconds timescale. These experimental findings are supported by molecular dynamics simulations. Binding of the dUMP substrate abolishes this flexibility and stabilizes the active site in a configuration where dUMP closely interacts with the flavin cofactor and very efficiently quenches fluorescence itself. Our results indicate a dynamic selected-fit mechanism where binding of the first substrate dUMP at high temperature stabilizes the enzyme in a configuration favorable for interaction with the second substrate NADPH, and more generally have important implications for the role of active site flexibility in enzymes interacting with multiple poly-atom substrates and products. Moreover, our data provide the basis for exploring the effect of inhibitor molecules on the active site dynamics of ThyX and other multisubstrate flavoenzymes.


Asunto(s)
Dominio Catalítico/genética , Modelos Moleculares , Conformación Proteica , Espectrometría de Fluorescencia/métodos , Thermotoga maritima/enzimología , Timidilato Sintasa/química , Nucleótidos de Desoxiuracil/metabolismo , Simulación de Dinámica Molecular , NADP/metabolismo , Temperatura , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo , Factores de Tiempo
11.
Nucleic Acids Res ; 41(22): 10358-70, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24049073

RESUMEN

Hef is an archaeal member of the DNA repair endonuclease XPF (XPF)/Crossover junction endonuclease MUS81 (MUS81)/Fanconi anemia, complementation group M (FANCM) protein family that in eukaryotes participates in the restart of stalled DNA replication forks. To investigate the physiological roles of Hef in maintaining genome stability in living archaeal cells, we studied the localization of Hef-green fluorescent protein fusions by fluorescence microscopy. Our studies revealed that Haloferax volcanii Hef proteins formed specific localization foci under regular growth conditions, the number of which specifically increased in response to replication arrest. Purification of the full-length Hef protein from its native host revealed that it forms a stable homodimer in solution, with a peculiar elongated configuration. Altogether our data indicate that the shape of Hef, significant physicochemical constraints and/or interactions with DNA limit the apparent cytosolic diffusion of halophilic DNA replication/repair complexes, and demonstrate that Hef proteins are dynamically recruited to archaeal eukaryotic-like chromatin to counteract DNA replication stress. We suggest that the evolutionary conserved function of Hef/FANCM proteins is to enhance replication fork stability by directly interacting with collapsed replication forks.


Asunto(s)
Proteínas Arqueales/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Afidicolina/farmacología , Proteínas Arqueales/análisis , Proteínas Arqueales/genética , Tamaño de la Célula/efectos de los fármacos , Daño del ADN , ADN Helicasas/análisis , ADN Helicasas/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/análisis , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Fluorescencia , Colorantes Fluorescentes/análisis , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Haloferax volcanii/citología , Haloferax volcanii/metabolismo , Resolvasas de Unión Holliday/fisiología , Multimerización de Proteína , Proteínas Recombinantes de Fusión/análisis
12.
Angew Chem Int Ed Engl ; 54(32): 9303-7, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26087935

RESUMEN

Proton transfer is critical in many important biochemical reactions. The unique three-step excited-state proton transfer in avGFP allows observations of protein proton transport in real-time. In this work we exploit femtosecond to microsecond transient IR spectroscopy to record, in D2 O, the complete proton transfer photocycle of avGFP, and two mutants (T203V and S205V) which modify the structure of the proton wire. Striking differences and similarities are observed among the three mutants yielding novel information on proton transfer mechanism, rates, isotope effects, H-bond strength and proton wire stability. These data provide a detailed picture of the dynamics of long-range proton transfer in a protein against which calculations may be compared.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Animales , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Enlace de Hidrógeno , Hidrozoos/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Protones , Espectrofotometría Infrarroja
13.
J Am Chem Soc ; 136(12): 4605-15, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24579721

RESUMEN

BLUF (blue light using flavin) domain proteins are an important family of blue light-sensing proteins which control a wide variety of functions in cells. The primary light-activated step in the BLUF domain is not yet established. A number of experimental and theoretical studies points to a role for photoinduced electron transfer (PET) between a highly conserved tyrosine and the flavin chromophore to form a radical intermediate state. Here we investigate the role of PET in three different BLUF proteins, using ultrafast broadband transient infrared spectroscopy. We characterize and identify infrared active marker modes for excited and ground state species and use them to record photochemical dynamics in the proteins. We also generate mutants which unambiguously show PET and, through isotope labeling of the protein and the chromophore, are able to assign modes characteristic of both flavin and protein radical states. We find that these radical intermediates are not observed in two of the three BLUF domains studied, casting doubt on the importance of the formation of a population of radical intermediates in the BLUF photocycle. Further, unnatural amino acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines, thus modifying the driving force for the proposed electron transfer reaction; the rate changes observed are also not consistent with a PET mechanism. Thus, while intermediates of PET reactions can be observed in BLUF proteins they are not correlated with photoactivity, suggesting that radical intermediates are not central to their operation. Alternative nonradical pathways including a keto-enol tautomerization induced by electronic excitation of the flavin ring are considered.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Proteínas Bacterianas/genética , Oscuridad , Transporte de Electrón , Radicales Libres/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína
14.
ACS Chem Biol ; 19(3): 696-706, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38385342

RESUMEN

The blue-light photoreceptor YtvA from Bacillus subtilis has an N-terminal flavin mononucleotide (FMN)-binding light-oxygen-voltage (LOV) domain that is fused to a C-terminal sulfate transporter and anti-σ factor antagonist (STAS) output domain. To interrogate the signal transduction pathway that leads to photoactivation, the STAS domain was replaced with a histidine kinase, so that photoexcitation of the flavin could be directly correlated with biological activity. N94, a conserved Asn that is hydrogen bonded to the FMN C2═O group, was replaced with Ala, Asp, and Ser residues to explore the role of this residue in triggering the structural dynamics that activate the output domain. Femtosecond to millisecond time-resolved multiple probe spectroscopy coupled with a fluorescence polarization assay revealed that the loss of the hydrogen bond between N94 and the C2═O group decoupled changes in the protein structure from photoexcitation. In addition, alterations in N94 also decreased the stability of the Cys-FMN adduct formed in the light-activated state by up to a factor of ∼25. Collectively, these studies shed light on the role of the hydrogen bonding network in the LOV ß-scaffold in signal transduction.


Asunto(s)
Proteínas Bacterianas , Fotorreceptores Microbianos , Proteínas Bacterianas/metabolismo , Análisis Espectral , Fotorreceptores Microbianos/química , Bacillus subtilis/metabolismo , Mononucleótido de Flavina/metabolismo
15.
J Biol Chem ; 287(19): 15648-60, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22431731

RESUMEN

Pyrococcus abyssi NucS is the founding member of a new family of structure-specific DNA endonucleases that interact with the replication clamp proliferating cell nuclear antigen (PCNA). Using a combination of small angle x-ray scattering and surface plasmon resonance analyses, we demonstrate the formation of a stable complex in solution, in which one molecule of the PabNucS homodimer binds to the outside surface of the PabPCNA homotrimer. Using fluorescent labels, PCNA is shown to increase the binding affinity of NucS toward single-strand/double-strand junctions on 5' and 3' flaps, as well as to modulate the cleavage specificity on the branched DNA structures. Our results indicate that the presence of a single major contact between the PabNucS and PabPCNA proteins, together with the complex-induced DNA bending, facilitate conformational flexibility required for specific cleavage at the single-strand/double-strand DNA junction.


Asunto(s)
Proteínas Arqueales/química , Endonucleasas/química , Antígeno Nuclear de Célula en Proliferación/química , Pyrococcus abyssi/enzimología , Algoritmos , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Unión Competitiva , Replicación del ADN/genética , ADN de Archaea/química , ADN de Archaea/genética , ADN de Archaea/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Pyrococcus abyssi/genética , Pyrococcus abyssi/metabolismo , Dispersión del Ángulo Pequeño , Resonancia por Plasmón de Superficie , Difracción de Rayos X
16.
Sci Total Environ ; 892: 164671, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37290646

RESUMEN

The abundance of anthropogenic debris dispersed in the environment is exponentially growing, raising concerns about marine life and human exposure to microplastics. Microfibers are the most abundant microplastic type in the environment. However, recent research suggests that most microfibers dispersed in the environment are not made of synthetic polymers. In this work, we systematically tested this assumption by determining the man-made or natural origin of microfibers found in different environments, including surface waters, sediments at depths >5000 m and highly sensitive habitats like mangroves and seagrass, and treated water using stimulated Raman scattering (SRS) microscopy. Our findings show that ¾th of analyzed microfibers are of natural origin. One plastic fiber is estimated per every 50 L in surface seawater, every 5 L in desalinated drinking water, every 3 g in deep sea sediments and every 27 g in coastal sediments. Synthetic fibers were significantly larger in surface seawaters compared to organic fibers due to higher resistance to solar radiation. These results emphasize the necessity of using spectroscopical methods to assess the origin of environmental microfibers to accurately estimate the abundance of synthetic materials in the environment.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/análisis , Plásticos , Monitoreo del Ambiente/métodos , Agua de Mar , Sedimentos Geológicos/química
17.
J Am Chem Soc ; 134(40): 16452-5, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22978701

RESUMEN

The first systematic pico-nanosecond time-resolved spectroscopic study of the firefly emitter oxyluciferin and two of its chemically modified analogues revealed that in the excited state the enol group is more acidic than the phenol group. The 6'-dehydroxylated derivative, in which only the 4-enolic hydroxyl proton is acidic, has an experimentally determined pK(a)* of 0.9 in dimethyl sulfoxide and an estimated pK(a)* of -0.3 in water. Moreover, this compound provided direct evidence that in a nonpolar, basic environment the keto form in the excited state can tautomerize into the enol, which subsequently undergoes excited-state proton transfer (ESPT) to produce enolate ion. This observation presents the first experimental evidence of excited-state keto-enol tautomerization of a firefly fluorophore, and it could be important in resolving the enol-keto conundrum related to the color-tuning mechanism of firefly bioluminescence. The 6'-dehydroxylated form of oxyluciferin adds a very rare case of a stable enol to the family of "super"photoacids.


Asunto(s)
Luciérnagas/química , Indoles/química , Sustancias Luminiscentes/química , Pirazinas/química , Animales , Isomerismo , Protones , Espectrometría de Fluorescencia , Agua/química
18.
Biochemistry ; 50(17): 3441-50, 2011 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-21425856

RESUMEN

During denaturant-induced equilibrium (un)folding of wild-type apoflavodoxin from Azotobacter vinelandii, a molten globule-like folding intermediate is formed. This wild-type protein contains three tryptophans. In this study, we use a general approach to analyze time-resolved fluorescence and steady-state fluorescence data that are obtained upon denaturant-induced unfolding of a single-tryptophan-containing variant of apoflavodoxin [i.e., W74/F128/F167 (WFF) apoflavodoxin]. The experimental data are assembled in matrices, and subsequent singular-value decomposition of these matrices (i.e., based on either steady-state or time-resolved fluorescence data) shows the presence of three significant, and independent, components. Consequently, to further analyze the denaturation trajectories, we use a three-state protein folding model in which a folding intermediate and native and unfolded protein molecules take part. Using a global analysis procedure, we determine the relative concentrations of the species involved and show that the stability of WFF apoflavodoxin against global unfolding is ∼4.1 kcal/mol. Analysis of time-resolved anisotropy data of WFF apoflavodoxin unfolding reveals the remarkable observation that W74 is equally well fixed within both the native protein and the molten globule-like folding intermediate. Slight differences between the direct environments of W74 in the folding intermediate and native protein cause different rotameric populations of the indole in both folding species as fluorescence lifetime analysis reveals. Importantly, thermodynamic analyses of the spectral denaturation trajectories of the double-tryptophan-containing protein variants WWF apoflavodoxin and WFW apoflavodoxin show that these variants are significantly more stable (5.9 kcal/mol and 6.8 kcal/mol, respectively) than WFF apoflavodoxin (4.1 kcal/mol) Hence, tryptophan residues contribute considerably to the 10.5 kcal/mol thermodynamic stability of native wild-type apoflavodoxin.


Asunto(s)
Apoproteínas/química , Azotobacter vinelandii/química , Proteínas Bacterianas/química , Flavodoxina/química , Triptófano/química , Apoproteínas/genética , Proteínas Bacterianas/genética , Flavodoxina/genética , Fluorescencia , Polarización de Fluorescencia , Pliegue de Proteína , Estabilidad Proteica , Desplegamiento Proteico , Termodinámica
19.
Eur Biophys J ; 39(4): 631-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19639311

RESUMEN

A high-throughput Förster resonance energy transfer (FRET) study was performed on the approximately 100 amino acids long N-terminal domain of the photosynthetic complex CP29 of higher plants. For this purpose, CP29 was singly mutated along its N-terminal domain, replacing one-by-one native amino acids by a cysteine, which was labeled with a BODIPY fluorescent probe, and reconstituted with the natural pigments of CP9, chlorophylls and xanthophylls. Picosecond fluorescence experiments revealed rapid energy transfer (approximately 20-70 ps) from BODIPY at amino-acid positions 4, 22, 33, 40, 56, 65, 74, 90, and 97 to Chl a molecules in the hydrophobic part of the protein. From the energy transfer times, distances were estimated between label and chlorophyll molecules, using the Förster equation. When the label was attached to amino acids 4, 56, and 97, it was found to be located very close to the protein core (approximately 15 A), whereas labels at positions 15, 22, 33, 40, 65, 74, and 90 were found at somewhat larger distances. It is concluded that the entire N-terminal domain is in close contact with the hydrophobic core and that there is no loop sticking out into the stroma. Most of the results support a recently proposed topological model for the N-terminus of CP29, which was based on electron-spin-resonance measurements on spin-labeled CP29 with and without its natural pigment content. The present results lead to a slight refinement of that model.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/química , Sustitución de Aminoácidos , Artefactos , Compuestos de Boro/química , Colorantes Fluorescentes/química , Complejos de Proteína Captadores de Luz/genética , Fotones , Complejo de Proteína del Fotosistema II/genética , Probabilidad , Estructura Terciaria de Proteína , Factores de Tiempo
20.
Phys Chem Chem Phys ; 12(27): 7593-602, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20490396

RESUMEN

A methodology is described for the quantitative determination of Förster resonance energy transfer (FRET) in live cells using the rise time of acceptor fluorescence as determined with fluorescence lifetime imaging microscopy (FLIM). An advantage of this method is that only those molecules that are involved in the energy-transfer process are monitored. This contrasts with current methods that measure either steady-state fluorescence of donor and acceptor molecules or time-resolved fluorescence of donor molecules, and thereby probe a mixture of donor molecules that are involved in FRET and those that are fluorescent but not involved in FRET. The absence of FRET can, for instance, be due to unwanted acceptor bleaching or incomplete maturing of visible proteins that should act as acceptor molecules. In addition, parameters describing the rise of acceptor fluorescence and the decay of donor fluorescence can be determined via simultaneous global analysis of multiple FLIM images, thereby increasing the reliability of the analysis. In the present study, plant protoplasts transfected with fusions of visible fluorescent proteins are used to illustrate the new data analysis method. It is demonstrated that the distances estimated with the present method are substantially smaller than those estimated from the average donor lifetimes, due to a fraction of non-transferring donor molecules. Software to reproduce the presented results is provided in an open-source and freely available package called "TIMP" for "The R project for Statistical Computing".


Asunto(s)
Células/citología , Células/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Fluorescencia , Microscopía Fluorescente , Algoritmos , Supervivencia Celular , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/química , Células Vegetales , Plantas/metabolismo , Protoplastos/citología , Protoplastos/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA