Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795408

RESUMEN

Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE: Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family.


Asunto(s)
Nucléolo Celular/virología , Células Ependimogliales/virología , Interacciones Huésped-Patógeno , Orthobunyavirus/patogenicidad , ARN Polimerasa II/química , Proteínas no Estructurales Virales/química , Animales , Línea Celular Transformada , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestructura , Plexo Coroideo/citología , Plexo Coroideo/metabolismo , Plexo Coroideo/virología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Células Ependimogliales/metabolismo , Células Ependimogliales/ultraestructura , Regulación de la Expresión Génica , Células HeLa , Humanos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteolisis , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Ovinos , Transducción de Señal , Transcripción Genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
2.
J Virol ; 88(18): 10792-802, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25008919

RESUMEN

UNLABELLED: Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus that causes an economically important disease in ruminants. BTV infection is a strong inducer of type I interferon (IFN-I) in multiple cell types. It has been shown recently that BTV and, more specifically, the nonstructural protein NS3 of BTV are able to modulate the IFN-I synthesis pathway. However, nothing is known about the ability of BTV to counteract IFN-I signaling. Here, we investigated the effect of BTV on the IFN-I response pathway and, more particularly, the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription protein (STAT) signaling pathway. We found that BTV infection triggered the expression of IFN-stimulated genes (ISGs) in A549 cells. However, when BTV-infected cells were stimulated with external IFN-I, we showed that activation of the IFN-stimulated response element (ISRE) promoter and expression of ISGs were inhibited. We found that this inhibition involved two different mechanisms that were dependent on the time of infection. After overnight infection, BTV blocked specifically the phosphorylation and nuclear translocation of STAT1. This inhibition correlated with the redistribution of STAT1 in regions adjacent to the nucleus. At a later time point of infection, BTV was found to interfere with the activation of other key components of the JAK/STAT pathway and to induce the downregulation of JAK1 and TYK2 protein expression. Overall, our study indicates for the first time that BTV is able to interfere with the JAK/STAT pathway to modulate the IFN-I response. IMPORTANCE: Bluetongue virus (BTV) causes a severe disease in ruminants and has an important impact on the livestock economy in areas of endemicity such as Africa. The emergence of strains, such as serotype 8 in Europe in 2006, can lead to important economic losses due to commercial restrictions and prophylactic measures. It has been known for many years that BTV is a strong inducer of type I interferon (IFN-I) in vitro and in vivo in multiple cell types. However, the ability of BTV to interact with the IFN-I system remains unclear. Here, we report that BTV is able to modulate the IFN-I response by interfering with the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription protein (STAT) signaling pathway. These findings contribute to knowledge of how BTV infection interferes with the host's innate immune response and becomes pathogenic. This will also be important for the design of efficacious vaccine candidates.


Asunto(s)
Virus de la Lengua Azul/fisiología , Lengua Azul/metabolismo , Interferón Tipo I/metabolismo , Animales , Lengua Azul/genética , Lengua Azul/virología , Interacciones Huésped-Patógeno , Humanos , Interferón Tipo I/genética , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal
3.
J Virol ; 87(14): 8241-6, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23658442

RESUMEN

Upon infection with Bluetongue virus (BTV), an arthropod-borne virus, type I interferon (IFN-I) is produced in vivo and in vitro. IFN-I is essential for the establishment of an antiviral cellular response, and most if not all viruses have elaborated strategies to counteract its action. In this study, we assessed the ability of BTV to interfere with IFN-I synthesis and identified the nonstructural viral protein NS3 as an antagonist of the IFN-I system.


Asunto(s)
Virus de la Lengua Azul/inmunología , Inmunidad Innata/inmunología , Interferón Tipo I/antagonistas & inhibidores , Transducción de Señal/inmunología , Proteínas no Estructurales Virales/metabolismo , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Inmunidad Innata/efectos de los fármacos , Interferón Tipo I/biosíntesis , Luciferasas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Proteínas no Estructurales Virales/farmacología
4.
J Virol ; 86(21): 11789-99, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22915805

RESUMEN

Bluetongue virus (BTV), an arthropod-borne member of the Reoviridae family, is a double-stranded RNA virus that causes an economically important livestock disease that has spread across Europe in recent decades. Production of type I interferon (alpha/beta interferon [IFN-α/ß]) has been reported in vivo and in vitro upon BTV infection. However, the cellular sensors and signaling pathways involved in this process remain unknown. Here we studied the mechanisms responsible for the production of IFN-ß in response to BTV serotype 8. Upon BTV infection of A549 cells, expression of IFN-ß and other proinflammatory cytokines was strongly induced at both the protein and mRNA levels. This response appeared to be dependent on virus replication, since exposure to UV-inactivated virus failed to induce IFN-ß. We also demonstrated that BTV infection activated the transcription factors IFN regulatory factor 3 and nuclear factor κB. We investigated the role of several pattern recognition receptors in this response and showed that expression of IFN-ß was greatly reduced after small-interfering-RNA-mediated knockdown of the RNA helicase encoded by retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5). In contrast, silencing of MyD88, Toll-like receptor 3, or the recently described DexD/H-box helicase DDX1 sensor had no or a weak effect on IFN-ß induction, suggesting that the RIG-I-like receptor pathway is specifically engaged for BTV sensing. Moreover, we also showed that overexpression of either RIG-I or MDA5 impaired BTV expression in infected A549 cells. Overall, this indicates that RIG-I and MDA5 can both contribute to the recognition and control of BTV infection.


Asunto(s)
Virus de la Lengua Azul/inmunología , ARN Helicasas DEAD-box/metabolismo , Células Epiteliales/virología , Interacciones Huésped-Patógeno , Interferón beta/biosíntesis , Animales , Línea Celular , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , Perfilación de la Expresión Génica , Silenciador del Gen , Humanos , Helicasa Inducida por Interferón IFIH1 , Interferón beta/genética , Receptores Inmunológicos
5.
Vet Res ; 44: 31, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23675914

RESUMEN

After the unexpected emergence of Bluetongue virus serotype 8 (BTV-8) in northern Europe in 2006, another arbovirus, Schmallenberg virus (SBV), emerged in Europe in 2011 causing a new economically important disease in ruminants. The virus, belonging to the Orthobunyavirus genus in the Bunyaviridae family, was first detected in Germany, in The Netherlands and in Belgium in 2011 and soon after in the United Kingdom, France, Italy, Luxembourg, Spain, Denmark and Switzerland. This review describes the current knowledge on the emergence, epidemiology, clinical signs, molecular virology and diagnosis of SBV infection.


Asunto(s)
Infecciones por Bunyaviridae/veterinaria , Enfermedades Transmisibles Emergentes/veterinaria , Orthobunyavirus/fisiología , Rumiantes , Animales , Infecciones por Bunyaviridae/diagnóstico , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/etiología , Enfermedades Transmisibles Emergentes/diagnóstico , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/etiología , Europa (Continente)/epidemiología , Orthobunyavirus/clasificación , Orthobunyavirus/genética , Orthobunyavirus/patogenicidad
6.
J Virol ; 85(23): 12134-45, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21917943

RESUMEN

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease caused by a phlebovirus of the family Bunyaviridae, which affects humans and ruminants in Africa and the Middle East. RFV virus (RVFV) possesses a single-stranded tripartite RNA genome of negative/ambisense polarity. The S segment utilizes the ambisense strategy and codes for two proteins, the N nucleoprotein and the nonstructural NSs protein, in opposite orientations. The two open reading frames (ORFs) are separated by an intergenic region (IGR) highly conserved among strains and containing a motif, 5'-GCUGC-3', present on the genome and antigenome, which was shown previously to play a role in transcription termination (C. G. Albarino, B. H. Bird, and S. T. Nichol, J. Virol. 81:5246-5256, 2007; T. Ikegami, S. Won, C. J. Peters, and S. Makino, J. Virol. 81:8421-8438, 2007). Here, we created recombinant RVFVs with mutations or deletions in the IGR and showed that the substitution of the motif sequence by a series of five A's inactivated transcription termination at the wild-type site but allowed the transcriptase to recognize another site with the consensus sequence present in the opposite ORF. Similar situations were observed for mutants in which the motif was still present in the IGR but located close to the stop codon of the translated ORF, supporting a model in which transcription is coupled to translation and translocating ribosomes abrogate transcription termination. Our data also showed that the signal tolerated some sequence variations, since mutation into 5'-GCAGC-3' was functional, and 5'-GUAGC-3' is likely the signal for the termination of the 3' end of the L mRNA.


Asunto(s)
ADN Intergénico/genética , Regulación Viral de la Expresión Génica , Genoma Viral , Virus de la Fiebre del Valle del Rift/genética , Regiones Terminadoras Genéticas/genética , Transcripción Genética , África , Animales , Secuencia de Bases , Northern Blotting , Chlorocebus aethiops , ADN Viral/genética , Datos de Secuencia Molecular , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Viral/genética , Fiebre del Valle del Rift/genética , Fiebre del Valle del Rift/virología , Homología de Secuencia de Ácido Nucleico , Células Vero
9.
PLoS One ; 8(1): e53446, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23335964

RESUMEN

A newly developed Enzym Like Immuno Sorbant Assay (ELISA) based on the recombinant nucleocapsid protein (N) of Schmallenberg virus (SBV) was evaluated and validated for the detection of SBV-specific IgG antibodies in ruminant sera by three European Reference Laboratories. Validation data sets derived from sheep, goat and bovine sera collected in France and Germany (n = 1515) in 2011 and 2012 were categorized according to the results of a virus neutralization test (VNT) or an indirect immuno-fluorescence assay (IFA). The specificity was evaluated with 1364 sera from sheep, goat and bovine collected in France and Belgium before 2009. Overall agreement between VNT and ELISA was 98.9% and 98.3% between VNT and IFA, indicating a very good concordance between the different techniques. Although cross-reactions with other Orthobunyavirus from the Simbu serogroup viruses might occur, it is a highly sensitive, specific and robust ELISA-test validated to detect anti-SBV antibodies. This test can be applied for SBV sero-diagnostics and disease-surveillance studies in ruminant species in Europe.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Bunyaviridae/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Nucleocápside/inmunología , Orthobunyavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Infecciones por Bunyaviridae/veterinaria , Bovinos , Europa (Continente) , Técnica del Anticuerpo Fluorescente Indirecta , Expresión Génica , Pruebas de Neutralización , Proteínas de la Nucleocápside/genética , Orthobunyavirus/genética , Curva ROC , Juego de Reactivos para Diagnóstico , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Reproducibilidad de los Resultados , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA