Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732656

RESUMEN

Studying cell settlement in the three-dimensional structure of synthetic biomaterials over time is of great interest in research and clinical translation for the development of artificial tissues and organs. Tracking cells as physical objects improves our understanding of the processes of migration, homing, and cell division during colonisation of the artificial environment. In this study, the 3D environment had a direct effect on the behaviour of biological objects. Recently, deep learning-based algorithms have shown significant benefits for cell segmentation tasks and, furthermore, for biomaterial design optimisation. We analysed the primary LHON fibroblasts in an artificial 3D environment after adeno-associated virus transduction. Application of these tools to model cell homing in biomaterials and to monitor cell morphology, migration and proliferation indirectly demonstrated restoration of the normal cell phenotype after gene manipulation by AAV transduction. Following the 3Rs principles of reducing the use of living organisms in research, modeling the formation of tissues and organs by reconstructing the behaviour of different cell types on artificial materials facilitates drug testing, the study of inherited and inflammatory diseases, and wound healing. These studies on the composition and algorithms for creating biomaterials to model the formation of cell layers were inspired by the principles of biomimicry.

2.
Polymers (Basel) ; 14(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35890737

RESUMEN

In this study, the mechanical and thermophysical properties of carbon fiber-reinforced polyethersulfone are investigated. To enhance the interfacial interaction between carbon fibers and the polymer matrix, the surface modification of carbon fibers by thermal oxidation is conducted. By means of AFM and X-ray spectroscopy, it is determined that surface modification changes the morphology and chemical composition of carbon fibers. It is shown that surface modification dramatically increases the mechanical properties of the composites. Thus, flexural strength and the E-modulus of the composites reinforced with modified fibers reached approximately 962 MPa and 60 GPa, respectively, compared with approximately 600 MPa and 50 GPa for the composites reinforced with the initial ones. The heat deflection temperatures of the composites reinforced with the initial and modified fibers were measured. It is shown that composites reinforced with modified fibers lose their stability at temperatures of about 211 °C, which correlates with the glass transition temperature of the PES matrix. The thermal conductivity of the composites with different fiber content is investigated in two directions: in-plane and transverse to layers of carbon fibers. The obtained composites had a relatively high realization of the thermal conductive properties of carbon fibers, up to 55-60%.

3.
Polymers (Basel) ; 13(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925323

RESUMEN

The structure of self-reinforced composites (SRCs) based on ultra-high molecular weight polyethylene (UHMWPE) was studied by means of Wide-Angle X-ray Scattering (WAXS), X-ray tomography, Raman spectroscopy, Scanning Electron Microscopy (SEM) and in situ tensile testing in combination with advanced processing tools to determine the correlation between the processing conditions, on one hand, and the molecular structure and mechanical properties, on the other. SRCs were fabricated by hot compaction of UHMWPE fibers at different pressure and temperature combinations without addition of polymer matrix or softener. It was found by WAXS that higher compaction temperatures led to more extensive melting of fibers with the corresponding reduction of the Herman's factor reflecting the degree of molecular orientation, while the increase of hot compaction pressure suppressed the melting of fibers within SRCs at a given temperature. X-ray tomography proved the absence of porosity while polarized light Raman spectroscopy measurements for both longitudinal and perpendicular fiber orientations showed qualitatively the anisotropy of SRC samples. SEM revealed that the matrix was formed by interlayers of molten polymer entrapped between fibers in SRCs. Moreover, in situ tensile tests demonstrated the increase of Young's modulus and tensile strength with increasing temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA