RESUMEN
Caspase-6 (CASP6) has emerged as an important player in Huntington disease (HD), Alzheimer disease (AD) and cerebral ischemia, where it is activated early in the disease process. CASP6 also plays a key role in axonal degeneration, further underscoring the importance of this protease in neurodegenerative pathways. As a protein's function is modulated by its protein-protein interactions, we performed a high-throughput yeast-2-hybrid (Y2H) screen against â¼17,000 human proteins to gain further insight into the function of CASP6. We identified a high-confidence list of 87 potential CASP6 interactors. From this list, 61% are predicted to contain a CASP6 recognition site. Of nine candidate substrates assessed, six are cleaved by CASP6. Proteins that did not contain a predicted CASP6 recognition site were assessed using a LUMIER assay approach, and 51% were further validated as interactors by this method. Of note, 54% of the high-confidence interactors identified show alterations in human HD brain at the mRNA level, and there is a significant enrichment for previously validated huntingtin (HTT) interactors. One protein of interest, STK3, a pro-apoptotic kinase, was validated biochemically to be a CASP6 substrate. Furthermore, our results demonstrate that in striatal cells expressing mutant huntingtin (mHTT), an increase in full length and fragment levels of STK3 are observed. We further show that caspase-3 is not essential for the endogenous cleavage of STK3. Characterization of the interaction network provides important new information regarding key pathways of interactors of CASP6 and highlights potential novel therapeutic targets for HD, AD and cerebral ischemia.
Asunto(s)
Caspasa 6/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Sitios de Unión , Línea Celular , Regulación de la Expresión Génica , Humanos , Proteína Huntingtina/genética , Modelos Biológicos , Procesamiento Proteico-Postraduccional , Serina-Treonina Quinasa 3 , Técnicas del Sistema de Dos HíbridosRESUMEN
Death-associated protein 6 (DAXX) is a ubiquitous protein implicated in various cellular processes such as apoptosis, tumorigenesis, development and transcription. The role of DAXX is however ambiguous and many contradictory results regarding its function in apoptosis upon various cellular stresses are described in the literature. In order to have a better understanding of the role of DAXX throughout the entire organism under physiological stress conditions, we have characterized the mRNA levels, protein expression and the proteolytic processing of DAXX in the normal aging process in peripheral organs and brain regions in C57BL/6 male mice. Overall, Daxx mRNA expression decreases with aging in the liver, kidney, heart, cortex and cerebellum. In contrast, an increase is observed in the striatum. The protein expression of DAXX and of its proteolytic fragments increases with aging in the kidney, heart and cortex. In liver and spleen, no changes are observed while in the striatum and cerebellum, certain forms increase and others decrease with age, suggesting that the functions of DAXX may be cell type dependent. This study provides important details regarding the expression and post-translational modifications of DAXX in aging in the entire organism and provides reference data for the deregulation observed in age-associated diseases.
Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Vísceras/metabolismo , Animales , Proteínas Co-Represoras , Masculino , Ratones , Ratones Endogámicos C57BL , Chaperonas Moleculares , Especificidad de Órganos/fisiologíaRESUMEN
Preeclampsia (PE), which is defined as new onset hypertension after 20 weeks of pregnancy accompanied by proteinuria, is characterized by inadequate placentation, oxidative stress, inflammation and widespread endothelial dysfunction. A link between PE and long-term risk of cardiovascular disease (CVD) was suggested by retrospective studies, which found that PE was associated with a 23-fold risk of CVD later in life, with a 57-fold risk in the case of severe and/or early-onset PE. Recently, meta-analyses and prospective studies have confirmed the association between PE and the emergence of an unfavorable CVD risk profile, in particular a 35-fold increased prevalence of the metabolic syndrome only 8 years after the index pregnancy. PE and CVD share many risk factors, including obesity, hypertension, dyslipidemia, hypercoagulability, insulin resistance and both entities are characterized by endothelial dysfunction. PE and CVD are complex traits sharing common risk factors and pathophysiological processes, but the genetic link between both remains to be elucidated. However, recent evidence suggests that genetic determinants associated with the metabolic syndrome, inflammation and subsequent endothelial dysfunction are involved. As the evidence now supports that PE represents a risk factor for the emergence of the metabolic syndrome and CVD later in life, the importance of long-term follow-up assessment of CVD risk beginning early in women with a history of PE must be considered and translated into new preventive measures.
Asunto(s)
Enfermedades Cardiovasculares/etiología , Preeclampsia , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/fisiopatología , Femenino , Ligamiento Genético , Humanos , Preeclampsia/genética , Preeclampsia/fisiopatología , Embarazo , Factores de RiesgoRESUMEN
Caspases and their substrates are key mediators of apoptosis and strongly implicated in various physiological processes. As the serine/threonine kinase family is involved in apoptosis and serine/threonine kinase 3 (STK3) is a recently identified caspase-6 substrate, we assessed the expression and cleavage of STK3 in murine peripheral organs and brain regions during the aging process. We also assessed caspase-3, -6, -7, and -8 expression and activity in order to delineate potential mechanism(s) underlying the generation of the STK3 fragments observed and their relation to the apoptotic pathway. We demonstrate for the first time the cleavage of STK3 by caspase-7 and show that STK3 protein levels globally increase throughout the organism with age. In contrast, caspase-3, -6, -7, and -8 expression and activity vary significantly among the different organs analyzed suggesting differential effects of aging on the apoptotic mechanism and/or nonapoptotic functions of caspases throughout the organism. These results further our understanding of the role of caspases and their substrates in the normal aging process and highlight a potential role for STK3 in neurodegeneration.
Asunto(s)
Envejecimiento/genética , Envejecimiento/metabolismo , Apoptosis/genética , Caspasas/genética , Caspasas/metabolismo , Expresión Génica/genética , Especificidad de Órganos/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Animales , Encéfalo/metabolismo , Caspasas/fisiología , Masculino , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/genética , Serina-Treonina Quinasa 3RESUMEN
In order to further understand age-related physiological changes and to have in depth reference values for C57BL/6 mice, we undertook a study to assess the effects of aging on peripheral organ weights, and brain region weights in wild type C57BL/6 male mice. Peripheral organs, body and brain region weights were collected from young (3-4 months), mid (12 months), old (23-28 months) and very old (>30 months) mice. Significant increases are observed with aging in body, liver, heart, kidney and spleen organ weights. A decrease in organ weight is observed with aging in liver and kidney only in the very old mice. In contrast, testes weight decreases with age. Within the brain, hippocampi, striata and olfactory bulbs weight decreases with age. These data further our knowledge of the anatomical and biological changes that occur with aging and provide reference values for physiological-based pharmacokinetic studies in C57BL/6 mice.
Asunto(s)
Envejecimiento , Peso Corporal/fisiología , Encéfalo/anatomía & histología , Animales , Corazón/anatomía & histología , Riñón/anatomía & histología , Hígado/anatomía & histología , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Valores de Referencia , Bazo/anatomía & histología , Testículo/anatomía & histologíaRESUMEN
Quality control is a complex issue for clinical molecular diagnostic applications. In the case of genotyping assays, artifacts such as allele dropout represent a risk of misdiagnosis for amplification-based methods. However, its frequency of occurrence in PCR-based diagnostic assays remains unknown. To maximize the likelihood of detecting allele dropout, our clinical genotyping PCR-based assays are designed with two independent assays for each allele (nonoverlapping primers on each DNA strand). To estimate the incidence of allelic dropout, we took advantage of the capacity of our clinical assays to detect such events. We retrospectively studied their occurrence in the initial PCR assay for 30,769 patient reports for mutations involved in four diseases produced over 8 years. Ninety-three allele dropout events were detected and all were solved before reporting. In addition, 42 cases of artifacts caused by amplification of an allele ultimately confirmed to not be part of the genotype (drop-in events) were detected and solved. These artifacts affected 1:227 genotypes, 94% of which were due to nonreproducible PCR failures rather than sequence variants interfering with the assay, suggesting that careful primer design cannot prevent most of these errors. This provides a quantitative estimate for clinical laboratories to take this phenomenon into account in quality management and to favor assay designs that can detect (and minimize) occurrence of these artifacts in routine clinical use.