Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 9(28): eadg4055, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37436979

RESUMEN

Generation of functionally mature organs requires exquisite control of transcriptional programs governing cell state transitions during development. Despite advances in understanding the behavior of adult intestinal stem cells and their progeny, the transcriptional regulators that control the emergence of the mature intestinal phenotype remain largely unknown. Using mouse fetal and adult small intestinal organoids, we uncover transcriptional differences between the fetal and adult state and identify rare adult-like cells present in fetal organoids. This suggests that fetal organoids have an inherent potential to mature, which is locked by a regulatory program. By implementing a CRISPR-Cas9 screen targeting transcriptional regulators expressed in fetal organoids, we establish Smarca4 and Smarcc1 as important factors safeguarding the immature progenitor state. Our approach demonstrates the utility of organoid models in the identification of factors regulating cell fate and state transitions during tissue maturation and reveals that SMARCA4 and SMARCC1 prevent precocious differentiation during intestinal development.


Asunto(s)
Células Madre Adultas , Sistemas CRISPR-Cas , Animales , Ratones , Diferenciación Celular/genética , Feto , Organoides
2.
Sci Adv ; 9(28): eadf9460, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37436997

RESUMEN

During intestinal organogenesis, equipotent epithelial progenitors mature into phenotypically distinct stem cells that are responsible for lifelong maintenance of the tissue. While the morphological changes associated with the transition are well characterized, the molecular mechanisms underpinning the maturation process are not fully understood. Here, we leverage intestinal organoid cultures to profile transcriptional, chromatin accessibility, DNA methylation, and three-dimensional (3D) chromatin conformation landscapes in fetal and adult epithelial cells. We observed prominent differences in gene expression and enhancer activity, which are accompanied by local changes in 3D organization, DNA accessibility, and methylation between the two cellular states. Using integrative analyses, we identified sustained Yes-Associated Protein (YAP) transcriptional activity as a major gatekeeper of the immature fetal state. We found the YAP-associated transcriptional network to be regulated at various levels of chromatin organization and likely to be coordinated by changes in extracellular matrix composition. Together, our work highlights the value of unbiased profiling of regulatory landscapes for the identification of key mechanisms underlying tissue maturation.


Asunto(s)
Epigenómica , Mucosa Intestinal , Adulto , Humanos , Intestinos , Epitelio , Cromatina/genética
3.
Curr Opin Genet Dev ; 70: 40-47, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34062491

RESUMEN

The intestine is a vital organ mediating absorption of nutrients and water. Following tissue damage, the intestine mounts a remarkable regenerative response by reprogramming cellular identity to facilitate reinstatement of homeostasis. Here we review recent advances within intestinal regenerative biology and the emerging concept of fetal-like reprogramming, in which the adult intestinal epithelium transiently enters a repair-associated state reminiscent of ontologically pre-existing stages. We focus on molecular mechanisms governing reprogramming of cellular identity via epithelial-mesenchymal crosstalk, and how novel approaches in organoid technologies enable identification and characterisation of cell-autonomous repair responses within epithelial cells. Transitioning from the single-cell level to tissue scale, we discuss clonal selection following regeneration and associated pathological repurcussions such as cancer and chronic inflammatory diseases.


Asunto(s)
Reprogramación Celular/fisiología , Intestinos/citología , Intestinos/fisiología , Regeneración/fisiología , Animales , Células Epiteliales , Humanos , Mucosa Intestinal/citología , Organoides
4.
Cell Stem Cell ; 22(1): 35-49.e7, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29249464

RESUMEN

Tissue regeneration requires dynamic cellular adaptation to the wound environment. It is currently unclear how this is orchestrated at the cellular level and how cell fate is affected by severe tissue damage. Here we dissect cell fate transitions during colonic regeneration in a mouse dextran sulfate sodium (DSS) colitis model, and we demonstrate that the epithelium is transiently reprogrammed into a primitive state. This is characterized by de novo expression of fetal markers as well as suppression of markers for adult stem and differentiated cells. The fate change is orchestrated by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous YAP/TAZ and induce conversion of cell fate. This provides a simple model for tissue regeneration, implicating cellular reprogramming as an essential element.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Reprogramación Celular , Matriz Extracelular/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Fosfoproteínas/metabolismo , Regeneración , Animales , Biomarcadores/metabolismo , Proteínas de Ciclo Celular , Feto/metabolismo , Humanos , Mecanotransducción Celular , Ratones Endogámicos C57BL , Transducción de Señal , Transcripción Genética , Activación Transcripcional/genética , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA