Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230195, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38736337

RESUMEN

Micrometeorites are estimated to represent the main part of the present flux of extraterrestrial matter found on the Earth's surface and provide valuable samples to probe the interplanetary medium. Here, we describe large and representative collections of micrometeorites currently available to the scientific community. These include Antarctic collections from surface ice and snow, as well as glacial sediments from the eroded top of nunataks-summits outcropping from the icesheet-and moraines. Collections extracted from deep-sea sediments (DSS) produced a large number of micrometeorites, in particular, iron-rich cosmic spherules that are rarer in other collections. Collections from the old and stable surface of the Atacama Desert show that finding large numbers of micrometeorites is not restricted to polar regions or DSS. The advent of rooftop collections marks an important step into involving citizen science in the study of micrometeorites, as well as providing potential sampling locations over all latitudes to explore the modern flux. We explore their strengths of the collections to address specific scientific questions and their potential weaknesses. The future of micrometeorite research will involve the finding of large fossil micrometeorite collections and benefit from recent advances in sampling cosmic dust directly from the air. This article is part of the theme issue 'Dust in the Solar System and beyond'.

2.
JMIR Form Res ; 7: e48209, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37976096

RESUMEN

BACKGROUND: Device-based measurements of physical behavior, using the current methods, place a large burden on participants. The Motus system could reduce this burden by removing the necessity for in-person meetings, replacing diaries written on paper with digital diaries, and increasing the automation of feedback generation. OBJECTIVE: This study aims to describe the development of the Motus system and evaluate its potential to reduce participant burden in a two-phase usability evaluation. METHODS: Motus was developed around (1) a thigh-worn accelerometer with Bluetooth data transfer; (2) a smartphone app containing an attachment guide, a digital diary, and facilitating automated data transfer; (3) a cloud infrastructure for data storage; (4) an analysis software to generate feedback for participants; and (5) a web-based app for administrators. We recruited 19 adults with a mean age of 45 (SD 11; range 27-63) years, of which 11 were female, to assist in the two-phase evaluation of Motus. A total of 7 participants evaluated the usability of mockups for a smartphone app in phase 1. Participants interacted with the app while thinking aloud, and any issues raised were classified as critical, serious, or minor by observers. This information was used to create an improved and functional smartphone app for evaluation in phase 2. A total of 12 participants completed a 7-day free-living measurement with Motus in phase 2. On day 1, participants attempted 20 system-related tasks under observation, including registration on the study web page, reading the information letter, downloading and navigating the smartphone app, attaching an accelerometer on the thigh, and completing a diary entry for both work and sleep hours. Task completion success and any issues encountered were noted by the observer. On completion of the 7-day measurement, participants provided a rating from 0 to 100 on the System Usability Scale and participated in a semistructured interview aimed at understanding their experience in more detail. RESULTS: The task completion rate for the 20 tasks was 100% for 13 tasks, >80% for 4 tasks, and <50% for 3 tasks. The average rating of system usability was 86 on a 0-100 scale. Thematic analysis indicated that participants perceived the system as easy to use and remember, and subjectively pleasing overall. Participants with shift work reported difficulty with entering sleep hours, and 66% (8/12) of the participants experienced slow data transfer between the app and the cloud infrastructure. Finally, a few participants desired a greater degree of detail in the generated feedback. CONCLUSIONS: Our two-phase usability evaluation indicated that the overall usability of the Motus system is high in free-living. Issues around the system's slow data transfer, participants with atypical work shifts, and the degree of automation and detail of generated feedback should be addressed in future iterations of the Motus system. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/35697.

3.
JMIR Res Protoc ; 11(6): e35697, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666571

RESUMEN

BACKGROUND: There is increasing recognition of the need for more comprehensive surveillance data, including information on physical activity of all intensities, sedentary behavior, and sleep. However, meeting this need poses significant challenges for current surveillance systems, which are mainly reliant on self-report. OBJECTIVE: The primary objective of this project is to develop and evaluate the feasibility of a sensor-based system for use in the surveillance of physical activity, sedentary behavior, and sleep (SurPASS) at a national level in Denmark. METHODS: The SurPASS project involves an international, multidisciplinary team of researchers collaborating with an industrial partner. The SurPASS system consists of (1) a thigh-worn accelerometer with Bluetooth connectivity, (2) a smartphone app, (3) an integrated back end, facilitating the automated upload, analysis, storage, and provision of individualized feedback in a manner compliant with European Union regulations on data privacy, and (4) an administrator web interface (web application) to monitor progress. The system development and evaluation will be performed in 3 phases. These phases will include gathering user input and specifications (phase 1), the iterative development, evaluation, and refinement of the system (phase 2), and the feasibility evaluation (phase 3). RESULTS: The project started in September 2020 and completed phase 2 in February 2022. Phase 3 began in March 2022 and results will be made available in 2023. CONCLUSIONS: If feasible, the SurPASS system could be a catalyst toward large-scale, sensor-based surveillance of physical activity, sedentary behavior, and sleep. It could also be adapted for cohort and interventional research, thus contributing to the generation of evidence for both interventions and public health policies and recommendations. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/35697.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA