Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(12): e1011838, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048355

RESUMEN

Influenza A viruses are RNA viruses that cause epidemics in humans and are enzootic in the pig population globally. In 2009, pig-to-human transmission of a reassortant H1N1 virus (H1N1pdm09) caused the first influenza pandemic of the 21st century. This study investigated the infection dynamics, pathogenesis, and lesions in pigs and ferrets inoculated with natural isolates of swine-adapted, human-adapted, and "pre-pandemic" H1N1pdm09 viruses. Additionally, the direct-contact and aerosol transmission properties of the three H1N1pdm09 isolates were assessed in ferrets. In pigs, inoculated ferrets, and ferrets infected by direct contact with inoculated ferrets, the pre-pandemic H1N1pdm09 virus induced an intermediary viral load, caused the most severe lesions, and had the highest clinical impact. The swine-adapted H1N1pdm09 virus induced the highest viral load, caused intermediary lesions, and had the least clinical impact in pigs. The human-adapted H1N1pdm09 virus induced the highest viral load, caused the mildest lesions, and had the least clinical impact in ferrets infected by direct contact. The discrepancy between viral load and clinical impact presumably reflects the importance of viral host adaptation. Interestingly, the swine-adapted H1N1pdm09 virus was transmitted by aerosols to two-thirds of the ferrets. Further work is needed to assess the risk of human-to-human aerosol transmission of swine-adapted H1N1pdm09 viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Animales , Porcinos , Subtipo H1N1 del Virus de la Influenza A/genética , Hurones , Aerosoles y Gotitas Respiratorias , Virus Reordenados/genética
2.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38289661

RESUMEN

During the UK 2020-2021 epizootic of H5Nx clade 2.3.4.4b high-pathogenicity avian influenza viruses (HPAIVs), high mortality occurred during incursions in commercially farmed common pheasants (Phasianus colchicus). Two pheasant farms, affected separately by H5N8 and H5N1 subtypes, included adjacently housed red-legged partridges (Alectoris rufa), which appeared to be unaffected. Despite extensive ongoing epizootics, H5Nx HPAIV partridge outbreaks were not reported during 2020-2021 and 2021-2022 in the UK, so it is postulated that partridges are more resistant to HPAIV infection than other gamebirds. To assess this, pathogenesis and both intra- and inter-species transmission of UK pheasant-origin H5N8-2021 and H5N1-2021 HPAIVs were investigated. Onward transmission to chickens was also assessed to better understand the risk of spread from gamebirds to other commercial poultry sectors. A lower infectious dose was required to infect pheasants with H5N8-2021 compared to H5N1-2021. However, HPAIV systemic dissemination to multiple organs within pheasants was more rapid following infection with H5N1-2021 than H5N8-2021, with the former attaining generally higher viral RNA levels in tissues. Intraspecies transmission to contact pheasants was successful for both viruses and associated with viral environmental contamination, while interspecies transmission to a first chicken-contact group was also efficient. However, further onward transmission to additional chicken contacts was only achieved with H5N1-2021. Intra-partridge transmission was only successful when high-dose H5N1-2021 was administered, while partridges inoculated with H5N8-2021 failed to shed and transmit, although extensive tissue tropism was observed for both viruses. Mortalities among infected partridges featured a longer incubation period compared to that in pheasants, for both viruses. Therefore, the susceptibility of different gamebird species and pathogenicity outcomes to the ongoing H5Nx clade 2.3.4.4b HPAIVs varies, but pheasants represent a greater likelihood of H5Nx HPAIV introduction into galliforme poultry settings. Consequently, viral maintenance within gamebird populations and risks to poultry species warrant enhanced investigation.


Asunto(s)
Galliformes , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Animales , Virulencia , Pollos
3.
Emerg Infect Dis ; 28(12): 2561-2564, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36418004

RESUMEN

During routine surveillance at the National Influenza Center, Denmark, we detected a zoonotic swine influenza A virus in a patient who became severely ill. We describe the clinical picture and the genetic characterization of this variant virus, which is distinct from another variant found previously in Denmark.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Animales , Humanos , Porcinos , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Zoonosis/epidemiología , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Dinamarca/epidemiología
4.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36012151

RESUMEN

We report the design, synthesis, and validation of the novel compound photocaged N6-cyclopentyladenosine (cCPA) to achieve precisely localized and timed release of the parent adenosine A1 receptor agonist CPA using 405 nm light. Gi protein-coupled A1 receptors (A1Rs) modulate neurotransmission via pre- and post-synaptic routes. The dynamics of the CPA-mediated effect on neurotransmission, characterized by fast activation and slow recovery, make it possible to implement a closed-loop control paradigm. The strength of neurotransmission is monitored as the amplitude of stimulus-evoked local field potentials. It is used for feedback control of light to release CPA. This system makes it possible to regulate neurotransmission to a pre-defined level in acute hippocampal brain slices incubated with 3 µM cCPA. This novel approach of closed-loop photopharmacology holds therapeutic potential for fine-tuned control of neurotransmission in diseases associated with neuronal hyperexcitability.


Asunto(s)
Agonistas del Receptor de Adenosina A1 , Receptor de Adenosina A1 , Agonistas del Receptor de Adenosina A1/farmacología , Retroalimentación , Hipocampo/metabolismo , Receptor de Adenosina A1/metabolismo , Transmisión Sináptica , Xantinas/farmacología
5.
Emerg Infect Dis ; 27(12): 3202-3205, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34808097

RESUMEN

A case of human infection with influenza A(H1N1)pdm09 virus containing a nonstructural gene highly similar to Eurasian avian-like H1Nx swine influenza virus was detected in Denmark in January 2021. We describe the clinical case and report testing results of the genetic and antigenic characterizations of the virus.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Anciano , Animales , Dinamarca/epidemiología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Virus Reordenados/genética , Porcinos
6.
Epilepsia ; 62(3): 659-670, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33570167

RESUMEN

OBJECTIVE: One third of epilepsy patients do not become seizure-free using conventional medication. Therefore, there is a need for alternative treatments. Preclinical research using designer receptors exclusively activated by designer drugs (DREADDs) has demonstrated initial success in suppressing epileptic activity. Here, we evaluated whether long-term chemogenetic seizure suppression could be obtained in the intraperitoneal kainic acid rat model of temporal lobe epilepsy, when DREADDs were selectively expressed in excitatory hippocampal neurons. METHODS: Epileptic male Sprague Dawley rats received unilateral hippocampal injections of adeno-associated viral vector encoding the inhibitory DREADD hM4D(Gi), preceded by a cell-specific promotor targeting excitatory neurons. The effect of clozapine-mediated DREADD activation on dentate gyrus evoked potentials and spontaneous electrographic seizures was evaluated. Animals were systemically treated with single (.1 mg/kg/24 h) or repeated (.1 mg/kg/6 h) injections of clozapine. In addition, long-term continuous release of clozapine and olanzapine (2.8 mg/kg/7 days) using implantable minipumps was evaluated. All treatments were administered during the chronic epileptic phase and between 1.5 and 13.5 months after viral transduction. RESULTS: In the DREADD group, dentate gyrus evoked potentials were inhibited after clozapine treatment. Only in DREADD-expressing animals, clozapine reduced seizure frequency during the first 6 h postinjection. When administered repeatedly, seizures were suppressed during the entire day. Long-term treatment with clozapine and olanzapine both resulted in significant seizure-suppressing effects for multiple days. Histological analysis revealed DREADD expression in both hippocampi and some cortical regions. However, lesions were also detected at the site of vector injection. SIGNIFICANCE: This study shows that inhibition of the hippocampus using chemogenetics results in potent seizure-suppressing effects in the intraperitoneal kainic acid rat model, even 1 year after viral transduction. Despite a need for further optimization, chemogenetic neuromodulation represents a promising treatment prospect for temporal lobe epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Clozapina/uso terapéutico , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Olanzapina/uso terapéutico , Receptores de Neurotransmisores/genética , Animales , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Potenciales Evocados/fisiología , Quinasas de Receptores Acoplados a Proteína-G/efectos de los fármacos , Quinasas de Receptores Acoplados a Proteína-G/genética , Edición Génica/métodos , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Neurotransmisores/efectos de los fármacos , Convulsiones/prevención & control
7.
Circulation ; 140(4): 280-292, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31117816

RESUMEN

BACKGROUND: The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying patients with type I congenital disorders of glycosylation (CDGs) with defective N-glycosylation. METHODS: We studied 29 patients with the 2 most prevalent types of type I CDG, ALG6 (asparagine-linked glycosylation protein 6)-deficiency CDG and PMM2 (phosphomannomutase 2)-deficiency CDG, and 23 first- and second-degree relatives with a heterozygous mutation and measured plasma cholesterol levels. Low-density lipoprotein (LDL) metabolism was studied in 3 cell models-gene silencing in HepG2 cells, patient fibroblasts, and patient hepatocyte-like cells derived from induced pluripotent stem cells-by measuring apolipoprotein B production and secretion, LDL receptor expression and membrane abundance, and LDL particle uptake. Furthermore, SREBP2 (sterol regulatory element-binding protein 2) protein expression and activation and endoplasmic reticulum stress markers were studied. RESULTS: We report hypobetalipoproteinemia (LDL cholesterol [LDL-C] and apolipoprotein B below the fifth percentile) in a large cohort of patients with type I CDG (mean age, 9 years), together with reduced LDL-C and apolipoprotein B in clinically unaffected heterozygous relatives (mean age, 46 years), compared with 2 separate sets of age- and sex-matched control subjects. ALG6 and PMM2 deficiency led to markedly increased LDL uptake as a result of increased cell surface LDL receptor abundance. Mechanistically, this outcome was driven by increased SREBP2 protein expression accompanied by amplified target gene expression, resulting in higher LDL receptor protein levels. Endoplasmic reticulum stress was not found to be a major mediator. CONCLUSIONS: Our study establishes N-glycosylation as an important regulator of LDL metabolism. Given that LDL-C was also reduced in a group of clinically unaffected heterozygotes, we propose that increasing LDL receptor-mediated cholesterol clearance by targeting N-glycosylation in the LDL pathway may represent a novel therapeutic strategy to reduce LDL-C and cardiovascular disease.


Asunto(s)
LDL-Colesterol/genética , Glicosilación , Receptores de LDL/metabolismo , Niño , Femenino , Humanos , Masculino
8.
Neurobiol Dis ; 139: 104808, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32087287

RESUMEN

Epilepsy is a neurological disorder characterized by recurrent epileptic seizures. The involvement of abnormal functional brain networks in the development of epilepsy and its comorbidities has been demonstrated by electrophysiological and neuroimaging studies in patients with epilepsy. This longitudinal study investigated changes in dynamic functional connectivity (dFC) and network topology during the development of epilepsy using the intraperitoneal kainic acid (IPKA) rat model of temporal lobe epilepsy (TLE). Resting state functional magnetic resonance images (rsfMRI) of 20 IPKA animals and 7 healthy control animals were acquired before and 1, 3, 6, 10 and 16 weeks after status epilepticus (SE) under medetomidine anaesthesia using a 7 T MRI system. Starting from 17 weeks post-SE, hippocampal EEG was recorded to determine the mean daily seizure frequency of each animal. Dynamic FC was assessed by calculating the correlation matrices between fMRI time series of predefined regions of interest within a sliding window of 50 s using a step length of 2 s. The matrices were classified into 6 FC states, each characterized by a correlation matrix, using k-means clustering. In addition, several time-variable graph theoretical network metrics were calculated from the time-varying correlation matrices and classified into 6 states of functional network topology, each characterized by a combination of network metrics. Our results showed that FC states with a lower mean functional connectivity, lower segregation and integration occurred more often in IPKA animals compared to control animals. Functional connectivity also became less variable during epileptogenesis. In addition, average daily seizure frequency was positively correlated with percentage dwell time (i.e. how often a state occurs) in states with high mean functional connectivity, high segregation and integration, and with the number of transitions between states, while negatively correlated with percentage dwell time in states with a low mean functional connectivity, low segregation and low integration. This indicates that animals that dwell in states of higher functional connectivity, higher segregation and higher integration, and that switch more often between states, have more seizures.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Animales , Mapeo Encefálico , Electroencefalografía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Hipocampo/fisiopatología , Procesamiento de Imagen Asistido por Computador , Ácido Kaínico , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Modelos Animales , Red Nerviosa , Vías Nerviosas/fisiopatología , Ratas , Convulsiones/fisiopatología
9.
J Inherit Metab Dis ; 43(3): 611-617, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31800099

RESUMEN

The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying the effects of defective glycosylation on plasma lipids in patients with B4GALT1-CDG, caused by a mutation in B4GALT1 with defective N-linked glycosylation. We studied plasma lipids, cholesteryl ester transfer protein (CETP) glyco-isoforms with isoelectric focusing followed by a western blot and CETP activity in three known B4GALT1-CDG patients and compared them with 11 age- and gender-matched, healthy controls. B4GALT1-CDG patients have significantly lowered non-high density lipoprotein cholesterol (HDL-c) and total cholesterol to HDL-c ratio compared with controls and larger HDL particles. Plasma CETP was hypoglycosylated and less active in B4GALT1-CDG patients compared to matched controls. Our study provides insight into the role of protein glycosylation in human lipoprotein homeostasis. The hypogalactosylated, hypo-active CETP found in patients with B4GALT1-CDG indicates a role of protein galactosylation in regulating plasma HDL and LDL. Patients with B4GALT1-CDG have large HDL particles probably due to hypogalactosylated, hypo-active CETP.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Trastornos Congénitos de Glicosilación/genética , Galactosiltransferasas/genética , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Proteínas de Transferencia de Ésteres de Colesterol/genética , Trastornos Congénitos de Glicosilación/metabolismo , Femenino , Glicosilación , Homocigoto , Humanos , Lactante , Masculino , Mutación
10.
Arterioscler Thromb Vasc Biol ; 39(3): 349-359, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30676072

RESUMEN

Statin therapy has delivered tremendous value to society by improving the burden of atherosclerotic cardiovascular disease. Nonetheless, atherosclerotic cardiovascular disease remains the leading cause of death globally. Technological advances such as in the field of genomics have revolutionized drug discovery and development and have revealed novel therapeutic targets to lower low-density lipoprotein cholesterol (LDL-C), as well as other detrimental lipids and lipoproteins. Therapeutic LDL-C lowering prevents atherosclerotic cardiovascular disease with an effect size proportional to absolute LDL-C reductions and time of exposure. This understanding supports the notion that reducing cumulative LDL-C exposure should be a key therapeutic target. PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibiting monoclonal antibodies provides the possibility of reducing LDL-C to very low levels. Novel therapeutic platforms such as RNA inhibition present opportunities to combine robust lipid lowering with infrequent dosing regimens, introducing therapies with vaccine-like properties. The position of lipid-lowering therapies with targets other than LDL-C, such as Lp(a) [lipoprotein(a)], TRL (triglyceride-rich lipoproteins), and remnant cholesterol, will likely be determined by the results of ongoing clinical trials. Current evidence suggests that reducing Lp(a) or TRLs could attenuate atherosclerotic cardiovascular disease risk in specific categories of patients. This review provides an overview of the latest therapeutic developments, focusing on their mechanisms, efficacy, and safety.


Asunto(s)
Dislipidemias/tratamiento farmacológico , Hipolipemiantes/uso terapéutico , Animales , Aterosclerosis/etiología , Aterosclerosis/prevención & control , Ensayos Clínicos como Asunto , Diseño de Fármacos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Dislipidemias/complicaciones , Ácido Eicosapentaenoico/uso terapéutico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hipolipemiantes/farmacología , Terapia Molecular Dirigida , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , PPAR alfa/efectos de los fármacos
11.
Sensors (Basel) ; 20(14)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664419

RESUMEN

Ambulatory electrocardiography (AECG) is a primary diagnostic tool in patients with potential arrhythmic disorders. To study the pathophysiological mechanisms of arrhythmic disorders, mouse models are widely implemented. The use of a technique similar to AECG for mice is thus of great relevance. We have optimized a protocol which allows qualitative, long-term ECG data recording in conscious, freely moving mice. Automated algorithms were developed to efficiently process the large amount of data and calculate the average heart rate (HR), the mean peak-to-peak interval and heart rate variability (HRV) based on peak detection. Ectopic beats are automatically detected based on aberrant peak intervals. As we have incorporated a multiple lead configuration in our ECG set-up, the nature and origin of the suggested ectopic beats can be analyzed in detail. The protocol and analysis tools presented here are promising tools for studies which require detailed, long-term ECG characterization in mouse models with potential arrhythmic disorders.


Asunto(s)
Arritmias Cardíacas/diagnóstico , Electrocardiografía Ambulatoria , Frecuencia Cardíaca , Procesamiento de Señales Asistido por Computador , Algoritmos , Animales , Modelos Animales de Enfermedad , Ratones
12.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396826

RESUMEN

Adenosine acts as an endogenous anticonvulsant and seizure terminator in the brain. Many of its anticonvulsive effects are mediated through the activation of the adenosine A1 receptor, a G protein-coupled receptor with a wide array of targets. Activating A1 receptors is an effective approach to suppress seizures. This review gives an overview of the neuronal targets of the adenosine A1 receptor focusing in particular on signaling pathways resulting in neuronal inhibition. These include direct interactions of G protein subunits, the adenyl cyclase pathway and the phospholipase C pathway, which all mediate neuronal hyperpolarization and suppression of synaptic transmission. Additionally, the contribution of the guanyl cyclase and mitogen-activated protein kinase cascades to the seizure-suppressing effects of A1 receptor activation are discussed. This review ends with the cautionary note that chronic activation of the A1 receptor might have detrimental effects, which will need to be avoided when pursuing A1 receptor-based epilepsy therapies.


Asunto(s)
Agonistas del Receptor de Adenosina A1/farmacología , Anticonvulsivantes/farmacología , Receptor de Adenosina A1/química , Convulsiones/tratamiento farmacológico , Transducción de Señal , Animales , Humanos , Convulsiones/metabolismo , Convulsiones/patología
13.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987703

RESUMEN

Patients with Marfan syndrome (MFS), a connective tissue disorder caused by pathogenic variants in the gene encoding the extracellular matrix protein fibrillin-1, have an increased prevalence of primary cardiomyopathy, arrhythmias, and sudden cardiac death. We have performed an in-depth in vivo and ex vivo study of the cardiac phenotype of Fbn1mgR/mgR mice, an established mouse model of MFS with a severely reduced expression of fibrillin-1. Using ultrasound measurements, we confirmed the presence of aortic dilatation and observed cardiac diastolic dysfunction in male Fbn1mgR/mgR mice. Upon post-mortem examination, we discovered that the mutant mice consistently presented myocardial lesions at the level of the right ventricular free wall, which we characterized as spontaneous pseudoaneurysms. Histological investigation demonstrated a decrease in myocardial compaction in the MFS mouse model. Furthermore, continuous 24 h electrocardiographic analysis showed a decreased heart rate variability and an increased prevalence of extrasystolic arrhythmic events in Fbn1mgR/mgR mice compared to wild-type littermates. Taken together, in this paper we document a previously unreported cardiac phenotype in the Fbn1mgR/mgR MFS mouse model and provide a detailed characterization of the cardiac dysfunction and rhythm disorders which are caused by fibrillin-1 deficiency. These findings highlight the wide spectrum of cardiac manifestations of MFS, which might have implications for patient care.


Asunto(s)
Aneurisma Falso/fisiopatología , Corazón/fisiopatología , Síndrome de Marfan , Miocardio/patología , Animales , Modelos Animales de Enfermedad , Fibrilina-1 , Frecuencia Cardíaca , Masculino , Síndrome de Marfan/patología , Síndrome de Marfan/fisiopatología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Función Ventricular
14.
Epilepsia ; 60(11): 2314-2324, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31608439

RESUMEN

OBJECTIVE: More than one-third of patients with temporal lobe epilepsy (TLE) continue to have seizures despite treatment with antiepileptic drugs, and many experience severe drug-related side effects, illustrating the need for novel therapies. Selective expression of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) allows cell-type-specific reduction of neuronal excitability. In this study, we evaluated the effect of chemogenetic suppression of excitatory pyramidal and granule cell neurons of the sclerotic hippocampus in the intrahippocampal mouse model (IHKA) for temporal lobe epilepsy. METHODS: Intrahippocampal IHKA mice were injected with an adeno-associated viral vector carrying the genes for an inhibitory DREADD hM4Di in the sclerotic hippocampus or control vector. Next, animals were treated systemically with different single doses of clozapine-N-oxide (CNO) (1, 3, and 10 mg/kg) and clozapine (0.03 and 0.1 mg/kg) and the effect on spontaneous hippocampal seizures, hippocampal electroencephalography (EEG) power, fast ripples (FRs) and behavior in the open field test was evaluated. Finally, animals received prolonged treatment with clozapine for 3 days and the effect on seizures was monitored. RESULTS: Treatment with both CNO and clozapine resulted in a robust suppression of hippocampal seizures for at least 15 hours only in DREADD-expressing animals. Moreover, total EEG power and the number of FRs were significantly reduced. CNO and/or clozapine had no effects on interictal hippocampal EEG, seizures, or locomotion/anxiety in the open field test in non-DREADD epileptic IHKA mice. Repeated clozapine treatment every 8 hours for 3 days resulted in almost complete seizure suppression in DREADD animals. SIGNIFICANCE: This study shows the potency of chemogenetics to robustly and sustainably suppress spontaneous epileptic seizures and pave the way for an epilepsy therapy in which a systemically administered exogenous drug selectively modulates specific cell types in a seizure network, leading to a potent seizure suppression devoid of the typical drug-related side effects.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/prevención & control , Convulsiones/genética , Convulsiones/prevención & control , Animales , Clozapina/administración & dosificación , Clozapina/análogos & derivados , Electroencefalografía/efectos de los fármacos , Electroencefalografía/métodos , Epilepsia del Lóbulo Temporal/fisiopatología , Vectores Genéticos/administración & dosificación , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Ácido Kaínico/administración & dosificación , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Convulsiones/fisiopatología
15.
J Gen Virol ; 98(6): 1360-1371, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28612703

RESUMEN

Aleutian mink disease virus (AMDV) is a frequently encountered pathogen associated with mink farming. Previous phylogenetic analyses of AMDV have been based on shorter and more conserved parts of the genome, e.g. the partial NS1 gene. Such fragments are suitable for detection but are less useful for elucidating transmission pathways while sequencing entire viral genomes provides additional informative sites and often results in better-resolved phylogenies. We explore how whole-genome sequencing can benefit investigations of AMDV transmission by reconstructing the relationships between AMDV field samples from a Danish outbreak. We show that whole-genome phylogenies are much better resolved than those based on the partial NS1 gene sequences extracted from the same alignment. Well-resolved phylogenies contain more information about the underlying transmission trees and are useful for understanding the spread of a pathogen. In the main case investigated here, the transmission path suggested by the tree structure was supported by epidemiological data. The use of molecular clock models further improved tree resolution and provided time estimates for the viral ancestors consistent with the proposed direction of spread. It was however impossible to infer transmission pathways from the partial NS1 gene tree, since all samples from the case farms branched out from a single internal node. A sliding window analysis showed that there were no shorter genomic regions providing the same phylogenetic resolution as the entire genome. Altogether, these results suggest that phylogenetic analyses based on whole-genome sequencing taking into account sampling dates and epidemiological data is a promising set of tools for clarifying AMDV transmission.


Asunto(s)
Virus de la Enfermedad Aleutiana del Visón/clasificación , Virus de la Enfermedad Aleutiana del Visón/aislamiento & purificación , Enfermedad Aleutiana del Visón/epidemiología , Brotes de Enfermedades , Transmisión de Enfermedad Infecciosa , Genoma Viral , Análisis de Secuencia de ADN , Enfermedad Aleutiana del Visón/transmisión , Enfermedad Aleutiana del Visón/virología , Virus de la Enfermedad Aleutiana del Visón/genética , Animales , Análisis por Conglomerados , Dinamarca/epidemiología , Granjas , Epidemiología Molecular , Filogenia
16.
J Virol ; 90(9): 4269-4277, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26819311

RESUMEN

UNLABELLED: Influenza A viruses are major pathogens for humans, domestic animals, and wildlife, and these viruses occasionally cross the species barrier. In spring 2014, increased mortality of harbor seals (Phoca vitulina), associated with infection with an influenza A(H10N7) virus, was reported in Sweden and Denmark. Within a few months, this virus spread to seals of the coastal waters of Germany and the Netherlands, causing the death of thousands of animals. Genetic analysis of the hemagglutinin (HA) and neuraminidase (NA) genes of this seal influenza A(H10N7) virus revealed that it was most closely related to various avian influenza A(H10N7) viruses. The collection of samples from infected seals during the course of the outbreak provided a unique opportunity to follow the adaptation of the avian virus to its new seal host. Sequence data for samples collected from 41 different seals from four different countries between April 2014 and January 2015 were obtained by Sanger sequencing and next-generation sequencing to describe the molecular epidemiology of the seal influenza A(H10N7) virus. The majority of sequence variation occurred in the HA gene, and some mutations corresponded to amino acid changes not found in H10 viruses isolated from Eurasian birds. Also, sequence variation in the HA gene was greater at the beginning than at the end of the epidemic, when a number of the mutations observed earlier had been fixed. These results imply that when an avian influenza virus jumps the species barrier from birds to seals, amino acid changes in HA may occur rapidly and are important for virus adaptation to its new mammalian host. IMPORTANCE: Influenza A viruses are major pathogens for humans, domestic animals, and wildlife. In addition to the continuous circulation of influenza A viruses among various host species, cross-species transmission of influenza A viruses occurs occasionally. Wild waterfowl and shorebirds are the main reservoir for most influenza A virus subtypes, and spillover of influenza A viruses from birds to humans or other mammalian species may result in major outbreaks. In the present study, various sequencing methods were used to elucidate the genetic changes that occurred after the introduction and subsequent spread of an avian influenza A(H10N7) virus among harbor seals of northwestern Europe by use of various samples collected during the outbreak. Such detailed knowledge of genetic changes necessary for introduction and adaptation of avian influenza A viruses to mammalian hosts is important for a rapid risk assessment of such viruses soon after they cross the species barrier.


Asunto(s)
Variación Genética , Subtipo H10N7 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Phoca/virología , Análisis Espacio-Temporal , Sustitución de Aminoácidos , Animales , Biología Computacional/métodos , Europa (Continente)/epidemiología , Genoma Viral , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Subtipo H10N7 del Virus de la Influenza A/clasificación , Filogenia , Filogeografía
17.
Epilepsia ; 57(7): e146-50, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27158916

RESUMEN

There is a continuous drive to find new, improved therapies that have a different mechanism of action in order to help diminish the sizable percentage of persons with pharmacoresistant epilepsy. Uric acid is increasingly recognized as contributing to the pathophysiology of multiple disorders, and there are indications that uric acid might play a role in epileptic mechanisms. Nevertheless, studies that directly investigate its involvement are lacking. In this study we assessed the susceptibility to pentylenetetrazole- and pilocarpine-induced seizures in mice with genetically altered uric acid levels by targeting urate oxidase, which is the enzyme responsible for uric acid breakdown. We found that although disruption of urate oxidase resulted in a decreased susceptibility to all behavioral end points in both seizure models, overexpression did not result in any alterations when compared to their wild-type littermates. Our results suggest that a chronic increase in uric acid levels may result in decreased brain excitability.


Asunto(s)
Convulsivantes/efectos adversos , Pentilenotetrazol/efectos adversos , Pilocarpina/efectos adversos , Convulsiones/inducido químicamente , Convulsiones/genética , Urato Oxidasa/deficiencia , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Convulsiones/patología , Urato Oxidasa/genética , Ácido Úrico/metabolismo
18.
Vet Res ; 47: 15, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26742636

RESUMEN

Stable spatial distribution of porcine reproductive and respiratory syndrome (PRRSV)-1 subtypes in Europe is accompanied by a strong population immunity induced by local PRRSV strains. In the present study, it was examined if the immunity induced by three West European subtype 1 PRRSV strains (2007 isolate 07V063 and 2013 isolates 13V091 and 13V117) offers protection against the highly virulent East European subtype 3 PRRSV strain Lena. The number of fever days was greater (p < 0.05) in the control group (7.6 ± 1.7 days) compared to the immune groups (07V063-immune: 4.0 ± 1.2 days, 13V091-immune: 4.6 ± 1.1 days, 13V117-immune: 4.0 ± 2.9 days). In all groups, protection was characterized by reduction (p < 0.05) of AUC values of nasal shedding (control: 14.6, 07V063-immune: 3.4, 13V091-immune: 8.9, 13V117-immune: 8.0) and viremia (control: 28.1, 07V063-immune: 5.4, 13V091-immune: 9.0, 13V117-immune: 8.3). Reduction of respiratory disease, nasal shedding (mean AUC and mean peak values) and viremia (mean AUC and mean peak values) was more pronounced in 07V063-immune (p < 0.05) than in 13V091-immune and 13V117-immune animals. Inoculation with subtype 1 PRRSV strains caused priming of the Lena-specific virus neutralization antibody response. Upon challenge with Lena, we observed a very strong serological booster effect for neutralizing antibodies against strains used for the first inoculation. Our results indicate that inoculation with subtype 1 PRRSV strains can partially protect against antigenically divergent subtype 3 strains. The lower protection level elicited by recently isolated subtype 1 PRRSV strains may impair the outcome of the spatial expansion of subtype 3 strains from East Europe to West Europe.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Vacunas Virales/inmunología , Replicación Viral , Animales , Anticuerpos Antivirales/sangre , Especificidad de Anticuerpos , Antígenos Virales/genética , Antígenos Virales/inmunología , Filogenia , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Porcinos
19.
Emerg Infect Dis ; 21(4): 684-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25811098

RESUMEN

Since April 2014, an outbreak of influenza in harbor seals has been ongoing in northern Europe. In Denmark during June-August, 152 harbor seals on the island of Anholt were found dead from severe pneumonia. We detected influenza A(H10N7) virus in 2 of 4 seals examined.


Asunto(s)
Subtipo H10N7 del Virus de la Influenza A/clasificación , Subtipo H10N7 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Phoca/virología , Animales , Dinamarca/epidemiología , Genes Virales , Subtipo H10N7 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/epidemiología , Filogenia
20.
J Gen Virol ; 96(Pt 7): 1603-12, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25701826

RESUMEN

The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2, and two were new reassortants, one with avian-like H1 and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titres in nasal wash and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics using a differentiated human bronchial epithelial cell line showed that all four viruses were able to replicate to high titres. Further, the viruses revealed preferential binding to the 2,6-α-silalylated glycans and investigation of the antiviral susceptibility of the viruses revealed that all were sensitive to neuraminidase inhibitors. These findings suggested that these viruses have the potential to infect humans and further underline the need for continued surveillance as well as biological characterization of new influenza A viruses.


Asunto(s)
Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/aislamiento & purificación , Enfermedades de los Porcinos/virología , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/virología , Europa (Continente)/epidemiología , Hurones , Humanos , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/fisiología , Datos de Secuencia Molecular , Polisacáridos/metabolismo , ARN Viral/genética , Virus Reordenados/genética , Virus Reordenados/fisiología , Receptores Virales/metabolismo , Análisis de Secuencia de ADN , Porcinos , Enfermedades de los Porcinos/epidemiología , Carga Viral , Acoplamiento Viral , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA