Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Neuropathol ; 148(1): 15, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102080

RESUMEN

Asymptomatic Alzheimer's disease (AsymAD) describes the status of individuals with preserved cognition but identifiable Alzheimer's disease (AD) brain pathology (i.e., beta-amyloid (Aß) deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD subjects to gain insight into the mechanisms underlying resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit enrichment in core plaques, decreased filamentous plaque accumulation, and increased plaque-surrounding microglia. Less pathological tau aggregation in dystrophic neurites was found in AsymAD brains than in AD brains, and tau seeding activity was comparable to that in healthy brains. We used spatial transcriptomics to characterize the plaque niche further and revealed autophagy, endocytosis, and phagocytosis as the pathways associated with the genes upregulated in the AsymAD plaque niche. Furthermore, the levels of ARP2 and CAP1, which are actin-based motility proteins that participate in the dynamics of actin filaments to allow cell motility, were increased in the microglia surrounding amyloid plaques in AsymAD cases. Our findings suggest that the amyloid-plaque microenvironment in AsymAD cases is characterized by the presence of microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared with that in AD brains. These two mechanisms can potentially protect against the toxic cascade initiated by Aß, preserving brain health, and slowing AD pathology progression.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Placa Amiloide , Proteínas tau , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Humanos , Microglía/metabolismo , Microglía/patología , Placa Amiloide/patología , Placa Amiloide/metabolismo , Proteínas tau/metabolismo , Anciano , Masculino , Anciano de 80 o más Años , Femenino , Encéfalo/patología , Encéfalo/metabolismo , Reserva Cognitiva/fisiología , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/patología , Ovillos Neurofibrilares/metabolismo
2.
Alzheimers Dement ; 20(8): 5311-5323, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38923164

RESUMEN

INTRODUCTION: Inpp5d is genetically associated with Alzheimer's disease risk. Loss of Inpp5d alters amyloid pathology in models of amyloidosis. Inpp5d is expressed predominantly in microglia but its function in brain is poorly understood. METHODS: We performed single-cell RNA sequencing to study the effect of Inpp5d loss on wild-type mouse brain transcriptomes. RESULTS: Loss of Inpp5d has sex-specific effects on the brain transcriptome. Affected genes are enriched for multiple neurodegeneration terms. Network analyses reveal a gene co-expression module centered around Inpp5d in female mice. Inpp5d loss alters Pleotrophin (PTN), Prosaposin (PSAP), and Vascular Endothelial Growth Factor A (VEGFA) signaling probability between cell types. DISCUSSION: Our data suggest that the normal function of Inpp5d is entangled with mechanisms involved in neurodegeneration. We report the effect of Inpp5d loss without pathology and show that this has dramatic effects on gene expression. Our study provides a critical reference for researchers of neurodegeneration, allowing separation of disease-specific changes mediated by Inpp5d in disease from baseline effects of Inpp5d loss. HIGHLIGHTS: Loss of Inpp5d has different effects in male and female mice. Genes dysregulated by Inpp5d loss relate to neurodegeneration. Total loss of Inpp5d in female mice collapses a conserved gene co-expression module. Loss of microglial Inpp5d affects the transcriptome of other cell types.


Asunto(s)
Transcriptoma , Animales , Femenino , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Microglía/metabolismo , Neuroglía/metabolismo , Factores Sexuales
3.
J Neuroinflammation ; 17(1): 223, 2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32711525

RESUMEN

BACKGROUND: Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. The mechanisms underlying the contribution of CAA to neurodegeneration are not currently understood. Although CAA is highly associated with the accumulation of amyloid beta (Aß), other amyloids are known to associate with the vasculature. Alzheimer's disease (AD) is characterized by parenchymal Aß deposition, intracellular accumulation of tau, and significant neuroinflammation. CAA increases with age and is present in 85-95% of individuals with AD. A substantial amount of research has focused on understanding the connection between parenchymal amyloid and glial activation and neuroinflammation, while associations between vascular amyloid pathology and glial reactivity remain understudied. METHODS: Here, we dissect the glial and immune responses associated with early-stage CAA with histological, biochemical, and gene expression analyses in a mouse model of familial Danish dementia (FDD), a neurodegenerative disease characterized by the vascular accumulation of Danish amyloid (ADan). Findings observed in this CAA mouse model were complemented with primary culture assays. RESULTS: We demonstrate that early-stage CAA is associated with dysregulation in immune response networks and lipid processing, severe astrogliosis with an A1 astrocytic phenotype, and decreased levels of TREM2 with no reactive microgliosis. Our results also indicate how cholesterol accumulation and ApoE are associated with vascular amyloid deposits at the early stages of pathology. We also demonstrate A1 astrocytic mediation of TREM2 and microglia homeostasis. CONCLUSION: The initial glial response associated with early-stage CAA is characterized by the upregulation of A1 astrocytes without significant microglial reactivity. Gene expression analysis revealed that several AD risk factors involved in immune response and lipid processing may also play a preponderant role in CAA. This study contributes to the increasing evidence that brain cholesterol metabolism, ApoE, and TREM2 signaling are major players in the pathogenesis of AD-related dementias, including CAA. Understanding the basis for possible differential effects of glial response, ApoE, and TREM2 signaling on parenchymal plaques versus vascular amyloid deposits provides important insight for developing future therapeutic interventions.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Angiopatía Amiloide Cerebral/metabolismo , Angiopatía Amiloide Cerebral/patología , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Gliosis/metabolismo , Gliosis/patología , Humanos , Masculino , Ratones , Ratones Transgénicos
4.
Int J Mol Sci ; 20(24)2019 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-31847365

RESUMEN

Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. Currently, there is no clear understanding of the mechanisms underlying the contribution of CAA to neurodegeneration. Despite the fact that CAA is highly associated with the accumulation of Aß, other types of amyloids have been shown to associate with the vasculature. Interestingly, in many cases, vascular amyloidosis has been associated with an active immune response and perivascular deposition of hyperphosphorylated tau. Despite the fact that in Alzheimer's disease (AD) a major focus of research has been the understanding of the connection between parenchymal amyloid plaques, tau aggregates in the form of neurofibrillary tangles (NFTs), and immune activation, the contribution of tau and neuroinflammation to neurodegeneration associated with CAA remains understudied. In this review, we discussed the existing evidence regarding the amyloid diversity in CAA and its relation to tau pathology and immune response, as well as the possible contribution of molecular and cellular mechanisms, previously associated with parenchymal amyloid in AD and AD-related dementias, to the pathogenesis of CAA. The detailed understanding of the "amyloid-tau-neuroinflammation" axis in the context of CAA could open the opportunity to develop therapeutic interventions for dementias associated with CAA that are currently being proposed for AD and AD-related dementias.


Asunto(s)
Amiloide/metabolismo , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/metabolismo , Inflamación/metabolismo , Proteínas tau/metabolismo , Animales , Humanos
5.
J Neurosci ; 34(12): 4260-72, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24647946

RESUMEN

Recent findings suggest that tau oligomers, which form before neurofibrillary tangles (NFTs), are the true neurotoxic tau entities in neurodegenerative tauopathies, including Alzheimer's disease (AD). Studies in animal models of tauopathy suggest that tau oligomers play a key role in eliciting behavioral and cognitive impairments. Here, we used a novel tau oligomer-specific monoclonal antibody (TOMA) for passive immunization in mice expressing mutant human tau. A single dose of TOMA administered either intravenously or intracerebroventricularly was sufficient to reverse both locomotor and memory deficits in a mouse model of tauopathy for 60 d, coincident with rapid reduction of tau oligomers but not phosphorylated NFTs or monomeric tau. Our data demonstrate that antibody protection is mediated by extracellular and rapid peripheral clearance. These findings provide the first direct evidence in support of a critical role for tau oligomers in disease progression and validate tau oligomers as a target for the treatment of AD and other neurodegenerative tauopathies.


Asunto(s)
Enfermedad de Alzheimer/terapia , Inmunización Pasiva , Ovillos Neurofibrilares/inmunología , Tauopatías/terapia , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/metabolismo , Fosforilación , Tauopatías/genética , Tauopatías/inmunología , Tauopatías/metabolismo , Proteínas tau/genética
6.
Neurobiol Dis ; 71: 14-23, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25134727

RESUMEN

Alzheimer's disease is a complex disease characterized by overlapping phenotypes with different neurodegenerative disorders. Oligomers are considered the most toxic species in amyloid pathologies. We examined human AD brain samples using an anti-oligomer antibody generated in our laboratory and detected potential hybrid oligomers composed of amyloid-ß, prion protein, α-synuclein, and TDP-43 phosphorylated at serines 409 and 410. These data and in vitro results suggest that Aß oligomer seeds act as a template for the aggregation of other proteins and generate an overlapping phenotype with other neuronal disorders. Furthermore, these results could explain why anti-amyloid-ß therapy has been unsuccessful.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Angiopatía Amiloide Cerebral/etiología , Proteínas de Unión al ADN/metabolismo , Lóbulo Frontal/metabolismo , Fragmentos de Péptidos/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Femenino , Lóbulo Frontal/patología , Humanos , Imagenología Tridimensional , Masculino , Ratones , Neuroblastoma/patología , Neuroimagen , Priones/metabolismo , alfa-Sinucleína/metabolismo
7.
STAR Protoc ; 5(3): 103185, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39078738

RESUMEN

The aggregation and spreading of "tau-seeds" are key for the development and progression of tauopathies, including Alzheimer's disease. Here we describe the steps to isolate and analyze biochemically active tau-seeds from human, mouse, and cell origin. We detail the procedure to isolate soluble tau-seeds by size exclusion chromatography and seeding assay. The isolated tau-seed can be further analyzed to determine the interactome by mass spectrometry. This workflow identifies protein-protein interactors of tau-seeds, providing a useful tool for finding new therapeutic targets. For complete details on the use and execution of this protocol, please refer to Martinez et al.1.

8.
bioRxiv ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39211286

RESUMEN

Pathological aggregation and propagation of hyperphosphorylated and aberrant forms of tau are critical features of the clinical progression of Alzheimer's disease and other tauopathies. To better understand the correlation between these pathological tau species and disease progression, we profiled the temporal progression of tau seeding activity and the levels of various phospho- and conformational tau species in the brains of two mouse models of human tauopathies. Our findings indicate that tau seeding is an early event that occurs well before the appearance of AT8-positive NFT. Specifically, we observed that tau phosphorylation in serine 214 (pTau-Ser214) positively correlates to tau seeding activity during disease progression in both mouse models. Furthermore, we found that the histopathology of pTau-Ser214 appears much earlier and has a distinct pattern and compartmentalization compared to the pathology of AT8, demonstrating the diversity of tau species within the same region of the brain. Importantly, we also observed that preventing the phosphorylation of tau at Ser214 significantly decreases tau propagation in mouse primary neurons, and seeding activity in a Drosophila model of tauopathy, suggesting a role for this tau phosphorylation in spreading pathological forms of tau. Together, these results suggest that the diverse spectrum of soluble pathological tau species could be responsible for the distinct pathological properties of tau and that it is critical to dissect the nature of the tau seed in the context of disease progression.

9.
Cell Rep ; 43(7): 114488, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39002124

RESUMEN

Neuroinflammation is a prominent feature of Alzheimer's disease (AD). Activated microglia undergo a reprogramming of cellular metabolism necessary to power their cellular activities during disease. Thus, selective targeting of microglial immunometabolism might be of therapeutic benefit for treating AD. In the AD brain, the levels of microglial hexokinase 2 (HK2), an enzyme that supports inflammatory responses by promoting glycolysis, are significantly increased. In addition, HK2 displays non-metabolic activities that extend its inflammatory role beyond glycolysis. The antagonism of HK2 affects microglial phenotypes and disease progression in a gene-dose-dependent manner. HK2 complete loss fails to improve pathology by exacerbating inflammation, while its haploinsufficiency reduces pathology in 5xFAD mice. We propose that the partial antagonism of HK2 is effective in slowing disease progression by modulating NF-κB signaling through its cytosolic target, IKBα. The complete loss of HK2 affects additional inflammatory mechanisms related to mitochondrial dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Progresión de la Enfermedad , Hexoquinasa , Microglía , Hexoquinasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Ratones , Humanos , FN-kappa B/metabolismo , Ratones Transgénicos , Transducción de Señal , Inhibidor NF-kappaB alfa/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Inflamación/patología , Inflamación/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Glucólisis/efectos de los fármacos , Dosificación de Gen
10.
Biochem Biophys Res Commun ; 430(3): 963-8, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23261448

RESUMEN

The tumor suppressor p53 plays an important role in genome integrity. It is frequently mutated in all types of human cancers, making p53 a key factor in cancer progression. Two phenotypic consequences of these alterations are dominant; a loss of function and a gain of function of p53, which, in several cases, accumulates in intracellular aggregates. Although the nature of such aggregates is still unclear, recent evidence indicates that p53 can undergo conformational transitions leading to amyloid formation. Amyloid diseases, such as, Alzheimer's disease, are characterized by the accumulation of insoluble aggregates displaying the fibrillar conformation. We decided to investigate the propensity of wild type p53 to aggregate and its consequent assembly into different amyloid species, such as oligomers and fibrils; and to determine if these changes in conformation lead to a loss of function of p53. Furthermore, we analyzed cases of Basal Cell Carcinoma (BCC), for the presence of p53 amyloids. Here, we show that p53 forms amyloid oligomers and fibrils, which coincide with p53 inability of binding to DNA consensus sequences. Both p53 amyloid oligomers and fibrils were detected in BCC cancer samples. Additionally, we demonstrate that p53 oligomers are the most cytotoxic to human cell cultures. Our study reveals p53 amyloid formation and demonstrates its dual role in the pathogenesis of cancer by producing a loss of protein function and a gain of toxic function, extensively described in several amyloidogenic diseases. Our results suggest that under certain circumstances, cancer could be considered a protein-conformation disease.


Asunto(s)
Amiloide/metabolismo , Carcinoma Basocelular/metabolismo , Neoplasias Cutáneas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Amiloide/química , Apoptosis , Carcinoma Basocelular/patología , Línea Celular Tumoral , ADN/metabolismo , Humanos , Unión Proteica , Conformación Proteica , Neoplasias Cutáneas/patología , Proteína p53 Supresora de Tumor/química
11.
FASEB J ; 26(5): 1946-59, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22253473

RESUMEN

Neurofibrillary tangles (NFTs) are a pathological hallmark of Alzheimer's disease (AD); however, the relationship between NFTs and disease progression remains controversial. Analyses of tau animal models suggest that phenotypes coincide with accumulation of soluble aggregated tau species but not the accumulation of NFTs. The pathological role of prefilamentous tau aggregates, e.g., tau oligomeric intermediates, is poorly understood, in part because of methodological challenges. Here, we engineered a novel tau oligomer-specific antibody, T22, and used it to elucidate the temporal course and biochemical features of oligomers during NFT development in AD brain. We found that tau oligomers in human AD brain samples were 4-fold higher than those in the controls. We also revealed the role of oligomeric tau conformers in pretangles, neuritic plaques, and neuropil threads in the frontal cortex tissue from AD brains; this analysis uncovers a consistent code that governs tau oligomerization with regard to degree of neuronal cytopathology. These data are the first to characterize the role of tau oligomers in the natural history of NFTs, and they highlight the suitability of tau oligomers as therapeutic targets in AD and related tauopathies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Biopolímeros/metabolismo , Proteínas tau/metabolismo , Anticuerpos/inmunología , Ensayo de Inmunoadsorción Enzimática , Transferencia Resonante de Energía de Fluorescencia , Lóbulo Frontal/metabolismo , Humanos , Inmunohistoquímica , Fosforilación , Ubiquitinación , Proteínas tau/inmunología
12.
bioRxiv ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37546928

RESUMEN

Asymptomatic Alzheimer's disease (AsymAD) describes the status of subjects with preserved cognition but with identifiable Alzheimer's disease (AD) brain pathology (i.e. Aß-amyloid deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD cases to gain insight into the underlying mechanisms of resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit an enrichment of core plaques and decreased filamentous plaque accumulation, as well as an increase in microglia surrounding this last type. In AsymAD cases we found less pathological tau aggregation in dystrophic neurites compared to AD and tau seeding activity comparable to healthy control subjects. We used spatial transcriptomics to further characterize the plaque niche and found autophagy, endocytosis, and phagocytosis within the top upregulated pathways in the AsymAD plaque niche, but not in AD. Furthermore, we found ARP2, an actin-based motility protein crucial to initiate the formation of new actin filaments, increased within microglia in the proximity of amyloid plaques in AsymAD. Our findings support that the amyloid-plaque microenvironment in AsymAD cases is characterized by microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared to AD. These two mechanisms can potentially provide protection against the toxic cascade initiated by Aß that preserves brain health and slows down the progression of AD pathology.

13.
Cells ; 12(12)2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37371067

RESUMEN

The role of TREM2 in Alzheimer's disease (AD) is not fully understood. Previous studies investigating the effect of TREM2 deletion on tauopathy mouse models without the contribution of b-amyloid have focused only on tau overexpression models. Herein, we investigated the effects of TREM2 deficiency on tau spreading using a mouse model in which endogenous tau is seeded to produce AD-like tau features. We found that Trem2-/- mice exhibit attenuated tau pathology in multiple brain regions concomitant with a decreased microglial density. The neuroinflammatory profile in TREM2-deficient mice did not induce an activated inflammatory response to tau pathology. These findings suggest that reduced TREM2 signaling may alter the response of microglia to pathological tau aggregates, impairing their activation and decreasing their capacity to contribute to tau spreading. However, caution should be exercised when targeting TREM2 as a therapeutic entry point for AD until its involvement in tau aggregation and propagation is better understood.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Glicoproteínas de Membrana/genética , Microglía/metabolismo , Receptores Inmunológicos/genética , Transducción de Señal , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/patología , Animales , Ratones
14.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014106

RESUMEN

Microgliosis and neuroinflammation are prominent features of Alzheimer's disease (AD). Disease-responsive microglia meet their increased energy demand by reprogramming metabolism, specifically, switching to favor glycolysis over oxidative phosphorylation. Thus, targeting of microglial immunometabolism might be of therapeutic benefit for treating AD, providing novel and often well understood immune pathways and their newly recognized actions in AD. We report that in the brains of 5xFAD mice and postmortem brains of AD patients, we found a significant increase in the levels of Hexokinase 2 (HK2), an enzyme that supports inflammatory responses by rapidly increasing glycolysis. Moreover, binding of HK2 to mitochondria has been reported to regulate inflammation by preventing mitochondrial dysfunction and NLRP3 inflammasome activation, suggesting that its inflammatory role extends beyond its glycolytic activity. Here we report, that HK2 antagonism selectively affects microglial phenotypes and disease progression in a gene-dose dependent manner. Paradoxically, complete loss of HK2 fails to improve AD progression by exacerbating inflammasome activity while its haploinsufficiency results in reduced pathology and improved cognition in the 5XFAD mice. We propose that the partial antagonism of HK2, is effective in slowed disease progression and inflammation through a non-metabolic mechanism associated with the modulation of NFKß signaling, through its cytosolic target IKBα. The complete loss of HK2 affects additional inflammatory mechanisms associated to mitochondrial dysfunction.

15.
ACS Chem Neurosci ; 14(21): 3913-3927, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37818657

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder underlying dementia in the geriatric population. AD manifests by two pathological hallmarks: extracellular amyloid-ß (Aß) peptide-containing senile plaques and intraneuronal neurofibrillary tangles comprised of aggregated hyperphosphorylated tau protein (p-tau). However, more than half of AD cases also display the presence of aggregated α-synuclein (α-syn)-containing Lewy bodies. Conversely, Lewy bodies disorders have been reported to have concomitant Aß plaques and neurofibrillary tangles. Our drug discovery program focuses on the synthesis of multitarget-directed ligands to abrogate aberrant α-syn, tau (2N4R), and p-tau (1N4R) aggregation and to slow the progression of AD and related dementias. To this end, we synthesized 11 compounds with a triazine-linker and evaluated their effectiveness in reducing α-syn, tau isoform 2N4R, and p-tau isoform 1N4R aggregation. We utilized biophysical methods such as thioflavin T (ThT) fluorescence assays, transmission electron microscopy (TEM), photoinduced cross-linking of unmodified proteins (PICUP), and M17D intracellular inclusion cell-based assays to evaluate the antiaggregation properties and cellular protection of our best compounds. We also performed disaggregation assays with isolated Aß-plaques from human AD brains. Our results demonstrated that compound 10 was effective in reducing both oligomerization and fibril formation of α-syn and tau isoform 2N4R in a dose-dependent manner via ThT and PICUP assays. Compound 10 was also effective at reducing the formation of recombinant α-syn, tau 2N4R, and p-tau 1N4R fibrils by TEM. Compound 10 reduced the development of α-syn inclusions in M17D neuroblastoma cells and stopped the seeding of tau P301S using biosensor cells. Disaggregation experiments showed smaller Aß-plaques and less paired helical filaments with compound 10. Compound 10 may provide molecular scaffolds for further optimization and preclinical studies for neurodegenerative proteinopathies.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Anciano , Humanos , Proteínas tau/metabolismo , alfa-Sinucleína/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Isoformas de Proteínas
16.
J Exp Med ; 220(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37606887

RESUMEN

Previous research demonstrated that genetic heterogeneity is a critical factor in modeling amyloid accumulation and other Alzheimer's disease phenotypes. However, it is unknown what mechanisms underlie these effects of genetic background on modeling tau aggregate-driven pathogenicity. In this study, we induced tau aggregation in wild-derived mice by expressing MAPT. To investigate the effect of genetic background on the action of tau aggregates, we performed RNA sequencing with brains of C57BL/6J, CAST/EiJ, PWK/PhJ, and WSB/EiJ mice (n = 64) and determined core transcriptional signature conserved in all genetic backgrounds and signature unique to wild-derived backgrounds. By measuring tau seeding activity using the cortex, we identified 19 key genes associated with tau seeding and amyloid response. Interestingly, microglial pathways were strongly associated with tau seeding activity in CAST/EiJ and PWK/PhJ backgrounds. Collectively, our study demonstrates that mouse genetic context affects tau-mediated alteration of transcriptome and tau seeding. The gene modules associated with tau seeding provide an important resource to better model tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Ratones , Ratones Endogámicos C57BL , Enfermedad de Alzheimer/genética , Tauopatías/genética , Encéfalo , Redes Reguladoras de Genes
17.
bioRxiv ; 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36778440

RESUMEN

Mouse genetic backgrounds have been shown to modulate amyloid accumulation and propagation of tau aggregates. Previous research into these effects has highlighted the importance of studying the impact of genetic heterogeneity on modeling Alzheimer's disease. However, it is unknown what mechanisms underly these effects of genetic background on modeling Alzheimer's disease, specifically tau aggregate-driven pathogenicity. In this study, we induced tau aggregation in wild-derived mice by expressing MAPT (P301L). To investigate the effect of genetic background on the action of tau aggregates, we performed RNA sequencing with brains of 6-month-old C57BL/6J, CAST/EiJ, PWK/PhJ, and WSB/EiJ mice (n=64). We also measured tau seeding activity in the cortex of these mice. We identified three gene signatures: core transcriptional signature, unique signature for each wild-derived genetic background, and tau seeding-associated signature. Our data suggest that microglial response to tau seeds is elevated in CAST/EiJ and PWK/PhJ mice. Together, our study provides the first evidence that mouse genetic context influences the seeding of tau. SUMMARY: Seeding of tau predates the phosphorylation and spreading of tau aggregates. Acri and colleagues report transcriptomic responses to tau and elevated tau seeds in wild-derived mice. This paper creates a rich resource by combining genetics, tau biosensor assays, and transcriptomics.

18.
Genome Med ; 15(1): 11, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36805764

RESUMEN

BACKGROUND: TREM2 is a transmembrane receptor expressed by myeloid cells and acts to regulate their immune response. TREM2 governs the response of microglia to amyloid and tau pathologies in the Alzheimer's disease (AD) brain. TREM2 is also present in a soluble form (sTREM2), and its CSF levels fluctuate as a function of AD progression. Analysis of stroke and AD mouse models revealed that sTREM2 proteins bind to neurons, which suggests sTREM2 may act in a non-cell autonomous manner to influence neuronal function. sTREM2 arises from the proteolytic cleavage of the membrane-associated receptor. However, alternatively spliced TREM2 species lacking a transmembrane domain have been postulated to contribute to the pool of sTREM2. Thus, both the source of sTREM2 species and its actions in the brain remain unclear. METHODS: The expression of TREM2 isoforms in the AD brain was assessed through the analysis of the Accelerating Medicines Partnership for Alzheimer's Disease Consortium transcriptomics data, as well as qPCR analysis using post-mortem samples of AD patients and of the AD mouse model 5xFAD. TREM2 cleavage and secretion were studied in vitro using HEK-293T and HMC3 cell lines. Synaptic plasticity, as evaluated by induction of LTP in hippocampal brain slices, was employed as a measure of sTREM2 actions. RESULTS: Three distinct TREM2 transcripts, namely ENST00000373113 (TREM2230), which encodes the full-length transmembrane receptor, and the alternatively spliced isoforms ENST00000373122 (TREM2222) and ENST00000338469 (TREM2219), are moderately increased in specific brain regions of patients with AD. We provide experimental evidence that TREM2 alternatively spliced isoforms are translated and secreted as sTREM2. Furthermore, our functional analysis reveals that all sTREM2 species inhibit LTP induction, and this effect is abolished by the GABAA receptor antagonist picrotoxin. CONCLUSIONS: TREM2 transcripts can give rise to a heterogeneous pool of sTREM2 which acts to inhibit LTP. These results provide novel insight into the generation, regulation, and function of sTREM2 which fits into the complex biology of TREM2 and its role in human health and disease. Given that sTREM2 levels are linked to AD pathogenesis and progression, our finding that sTREM2 species interfere with LTP furthers our understanding about the role of TREM2 in AD.


Asunto(s)
Enfermedad de Alzheimer , Potenciación a Largo Plazo , Animales , Ratones , Humanos , Enfermedad de Alzheimer/genética , Isoformas de Proteínas/genética , Encéfalo , Línea Celular , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
19.
J Biol Chem ; 286(25): 22122-30, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21507938

RESUMEN

Annular protofibrils (APFs) represent a new and distinct class of amyloid structures formed by disease-associated proteins. In vitro, these pore-like structures have been implicated in membrane permeabilization and ion homeostasis via pore formation. Still, evidence for their formation and relevance in vivo is lacking. Herein, we report that APFs are in a distinct pathway from fibril formation in vitro and in vivo. In human Alzheimer disease brain samples, amyloid-ß APFs were associated with diffuse plaques, but not compact plaques; moreover, we show the formation of intracellular APFs. Our results together with previous studies suggest that the prevention of amyloid-ß annular protofibril formation could be a relevant target for the prevention of amyloid-ß toxicity in Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Multimerización de Proteína , Enfermedad de Alzheimer/patología , Encéfalo/patología , Humanos , Placa Amiloide/metabolismo , Porosidad , Estructura Secundaria de Proteína
20.
Neurobiol Aging ; 109: 52-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655981

RESUMEN

Pathological aggregation of tau and neuroinflammatory changes mark the clinical course of Alzheimer's disease and related tauopathies. To understand the correlation between these pathological hallmarks and functional deficits, we assessed behavioral and physiological deficits in the PS19 mouse model, a broadly utilized model of tauopathy. At 9 months, PS19 mice have characteristic hyperactive behavior, a decline in motor strength, and deterioration in physiological conditions marked by lower body temperature, reduced body weight, and an increase in measures of frailty. Correlation of these deficits with different pathological hallmarks revealed that pathological tau species, characterized by soluble p-tau species, and tau seeding bioactivity correlated with impairment in grip strength and thermal regulation. On the other hand, astrocyte reactivity showed a positive correlation with the hyperactive behavior of the PS19 mice. These results suggest that a diverse spectrum of soluble pathological tau species could be responsible for different symptoms and that neuroinflammation could contribute to functional deficits independently from tau pathology. These observations enhance the necessity of a multi-targeted approach for the treatment of neurodegenerative tauopathies.


Asunto(s)
Gliosis/etiología , Enfermedades Neuroinflamatorias/complicaciones , Agregación Patológica de Proteínas/complicaciones , Tauopatías/etiología , Proteínas tau/metabolismo , Animales , Conducta Animal , Regulación de la Temperatura Corporal , Modelos Animales de Enfermedad , Femenino , Fragilidad/etiología , Fuerza de la Mano , Humanos , Masculino , Ratones Transgénicos , Actividad Motora , Tauopatías/patología , Tauopatías/fisiopatología , Tauopatías/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA