Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
RSC Adv ; 13(20): 13735-13785, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37152571

RESUMEN

Nanomaterials and nanoparticles are a burgeoning field of research and a rapidly expanding technology sector in a wide variety of application domains. Nanomaterials have made exponential progress due to their numerous uses in a variety of fields, particularly the advancement of engineering technology. Nanoparticles are divided into various groups based on the size, shape, and structural morphology of their bodies. The 21st century's defining feature of nanoparticles is their application in the design and production of semiconductor devices made of metals, metal oxides, carbon allotropes, and chalcogenides. For the researchers, these materials then opened a new door to a variety of applications, including energy storage, catalysis, and biosensors, as well as devices for conversion and medicinal uses. For chemical and thermal applications, ZnO is one of the most stable n-type semiconducting materials available. It is utilised in a wide range of products, from luminous materials to batteries, supercapacitors, solar cells to biomedical photocatalysis sensors, and it may be found in a number of forms, including pellets, nanoparticles, bulk crystals, and thin films. The distinctive physiochemical characteristics of semiconducting metal oxides are particularly responsible for this. ZnO nanostructures differ depending on the synthesis conditions, growth method, growth process, and substrate type. A number of distinct growth strategies for ZnO nanostructures, including chemical, physical, and biological methods, have been recorded. These nanostructures may be synthesized very simply at very low temperatures. This review focuses on and summarizes recent achievements in fabricating semiconductor devices based on nanostructured materials as 2D materials as well as rapidly developing hybrid structures. Apart from this, challenges and promising prospects in this research field are also discussed.

2.
J Appl Biomater Funct Mater ; 20: 22808000221104004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35787191

RESUMEN

Current research underscores entropy investigation in an infiltrating mode of Sutterby nanofluid (SNF) stream past a dramatically expanding flat plate that highlights Parabolic Trough Solar Collector (PTSC). Satisfactory likeness factors are utilized to change halfway differential conditions (PDEs) to nonlinear conventional differential conditions (ODEs) along with relating limit requirements. A productive Keller-box system is locked in to achieve approximated arrangement of decreased conventional differential conditions. In the review, two sorts of nanofluids including Copper-sodium alginate (Cu-SA) and Gold-sodium alginate (Au-SA) are dissected. Results are graphically plotted as well as talked about in actual viewpoints. As indicated by key discoveries, an improvement in Brinkmann, as well as Reynolds number, brings about expanding the general framework entropy. Sutterby nanofluid boundary improves heat rate in PTSC. Additionally, Copper-sodium alginate nanofluid is detected as a superior thermal conductor than Gold-sodium alginate nanofluid. Further to that, the reported breakthroughs are beneficial to updating extremely bright lighting bulbs, heating and cooling machinery, fiber required to generate light, power production, numerous boilers, and other similar technologies.


Asunto(s)
Alginatos , Nanopartículas del Metal , Cobre , Oro , Calor
3.
Sci Rep ; 12(1): 16447, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180723

RESUMEN

Following to improved thermal impact of hybrid nanomaterials, wide range applications of such materials is observed in the thermal engineering, extrusion systems, solar energy, power generation, heat transfer devices etc. The hybrid nanofluid is a modified form of nanofluid which is beneficial for improving energy transfer efficiency. In current analysis, the solid nanoparticles aluminium ([Formula: see text]) and copper ([Formula: see text]) have been mixed with water to produce a new hybrid nanofluid. The investigation of a steady two-dimensional mixed convection boundary layer flow of the resultant hybrid nanofluid on a vertical exponential shrunk surface in the existence of porous, magnetic, thermal radiation, velocity, and thermal slip conditions is carried out. Exponential similarity variables are adopted to transform the nonlinear partial differential equation into a system of ordinary differential equations which has been then solved by employing the shooting method in Maple software. The obtained numerical results such as coefficient of skin friction [Formula: see text], heat transfer rate [Formula: see text], velocity [Formula: see text] and temperature [Formula: see text] distributions are presented in the form of different graphs. The results revealed that duality exists in solution when the suction parameter [Formula: see text] in assisting flow case. Due to non-uniqueness of solutions, a temporal stability analysis needs to be performed and the result indicates that the upper branch is stable and realizable compared to the lower branch.

4.
Med Biol Eng Comput ; 60(11): 3169-3185, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36107356

RESUMEN

This manuscript is devoted to investigate the mathematical model of fractional-order dynamical system of the recent disease caused by Corona virus. The said disease is known as Corona virus infectious disease (COVID-19). Here we analyze the modified SEIR pandemic fractional order model under nonsingular kernel type derivative introduced by Atangana, Baleanu and Caputo ([Formula: see text]) to investigate the transmission dynamics. For the validity of the proposed model, we establish some qualitative results about existence and uniqueness of solution by using fixed point approach. Further for numerical interpretation and simulations, we utilize Adams-Bashforth method. For numerical investigations, we use some available clinical data of the Wuhan city of China, where the infection initially had been identified. The disease free and pandemic equilibrium points are computed to verify the stability analysis. Also we testify the proposed model through the available data of Pakistan. We also compare the simulated data with the reported real data to demonstrate validity of the numerical scheme and our analysis.


Asunto(s)
COVID-19 , Dinámicas no Lineales , Humanos , Modelos Teóricos
5.
Micromachines (Basel) ; 13(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36557490

RESUMEN

Metallic glass (MG) is a promising coating material developed to enhance the surface hardness of metallic substrates, with laser cladding having become popular to develop such coatings. MGs properties are affected by the laser cladding variables (laser power, scanning speed, spot size). Meanwhile, the substrate surface roughness significantly affects the geometry and hardness of the laser-cladded MG. In this research, Fe-based MG was laser-cladded on substrates with different surface roughness. For this purpose, the surfaces of the substrate were prepared for cladding using two methods: sandpaper polishing (SP) and sandblasting (SB), with two levels of grit size used for each method (SP150, SP240, SB40, SB100). The experiment showed that substrate surface roughness affected the geometry and hardness of laser-cladded Fe-based MG. To predict and optimize the geometry and hardness of laser-cladded Fe-based MG single tracks at different substrate surface roughness, a fuzzy logic control system (FLCS) was developed. The FLCS results indicate that it is an efficient tool to select the proper preparation technique of the substrate surface for higher clad hardness and maximum geometry to minimize the number of cladding tracks for full surface cladding.

6.
J Clin Med ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36498651

RESUMEN

The evolution of AI and data science has aided in mechanizing several aspects of medical care requiring critical thinking: diagnosis, risk stratification, and management, thus mitigating the burden of physicians and reducing the likelihood of human error. AI modalities have expanded feet to the specialty of pediatric cardiology as well. We conducted a scoping review searching the Scopus, Embase, and PubMed databases covering the recent literature between 2002-2022. We found that the use of neural networks and machine learning has significantly improved the diagnostic value of cardiac magnetic resonance imaging, echocardiograms, computer tomography scans, and electrocardiographs, thus augmenting the clinicians' diagnostic accuracy of pediatric heart diseases. The use of AI-based prediction algorithms in pediatric cardiac surgeries improves postoperative outcomes and prognosis to a great extent. Risk stratification and the prediction of treatment outcomes are feasible using the key clinical findings of each CHD with appropriate computational algorithms. Notably, AI can revolutionize prenatal prediction as well as the diagnosis of CHD using the EMR (electronic medical records) data on maternal risk factors. The use of AI in the diagnostics, risk stratification, and management of CHD in the near future is a promising possibility with current advancements in machine learning and neural networks. However, the challenges posed by the dearth of appropriate algorithms and their nascent nature, limited physician training, fear of over-mechanization, and apprehension of missing the 'human touch' limit the acceptability. Still, AI proposes to aid the clinician tomorrow with precision cardiology, paving a way for extremely efficient human-error-free health care.

7.
Micromachines (Basel) ; 13(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36014258

RESUMEN

A variety of methodologies have been used to explore heat transport enhancement, and the fin approach to inspect heat transfer characteristics is one such effective method. In a broad range of industrial applications, including heat exchangers and microchannel heat sinks, fins are often employed to improve heat transfer. Encouraged by this feature, the present research is concerned with the temperature distribution caused by convective and radiative mechanisms in an internal heat-generating porous longitudinal dovetail fin (DF). The Darcy formulation is considered for analyzing the velocity of the fluid passing through the fin, and the Rosseland approximation determines the radiation heat flux. The heat transfer problem of an inverted trapezoidal (dovetail) fin is governed by a second-order ordinary differential equation (ODE), and to simplify it to a dimensionless form, nondimensional terms are utilized. The generated ODE is numerically solved using the spectral collocation method (SCM) via a local linearization approach. The effect of different physical attributes on the dimensionless thermal field and heat flux is graphically illustrated. As a result, the temperature in the dovetail fin transmits in a decreasing manner for growing values of the porosity parameter. For elevated values of heat generation and the radiation-conduction parameter, the thermal profile of the fin displays increasing behavior, whereas an increment in the convection-conduction parameter downsizes the thermal dispersal. It is found that the SCM technique is very effective and more conveniently handles the nonlinear heat transfer equation. Furthermore, the temperature field results from the SCM-based solution are in very close accordance with the outcomes published in the literature.

8.
Micromachines (Basel) ; 13(10)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36295918

RESUMEN

This article describes the incompressible two-dimensional heat and mass transfer of an electrically conducting second-grade fluid flow in a porous medium with Hall and ion slip effects, diffusion thermal effects, and radiation absorption effects. It is assumed that the fluid is a gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. It is assumed that the liquid is opaque and absorbs and emits radiation in a manner that does not result in scattering. It is considered an unsteady laminar MHD convective rotating flow of heat-producing or absorbing second-grade fluid across a semi-infinite vertical moving permeable surface. The profiles of velocity components, temperature distribution, and concentration are studied to apply the regular perturbation technique. These profiles are shown as graphs for various fluid and geometric parameters such as Hall and ion slip parameters, radiation absorption, diffusion thermo, Prandtl number, Schmidt number, and chemical reaction rate. On the other hand, the skin friction coefficient and the Nusselt number are determined by numerical evaluation and provided in tables. These tables are then analysed and debated for various values of the flow parameters that regulate it. It may be deduced that an increase in the parameters of radiation absorption, Hall, and ion slip over the fluid region increases the velocity produced. The resulting momentum continually grows to a very high level, with contributions from the thermal and solutal buoyancy forces. The temperature distribution may be more concentrated by raising both the heat source parameter and the quantity of radiation. When one of the parameters for the chemical reaction is increased, the whole fluid area will experience a fall in concentration. Skin friction may be decreased by manipulating the rotation parameter, but the Hall effect and ion slip effect can worsen it. When the parameter for the chemical reaction increases, there is a concomitant rise in the mass transfer rate.

9.
Micromachines (Basel) ; 13(10)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36296103

RESUMEN

In this investigation, the compressibility effects are visualized on the flow of non-Newtonian fluid, which obeys the stress-strain relationship of an upper convected Maxwell model in a microchannel. The fundamental laws of momentum and mass conservation are used to formulate the problem. The governing nonlinear partial differential equations are reduced to a set of ordinary differential equations and solved with the help of the regular perturbation method assuming the amplitude ratio (wave amplitude/half width of channel) as a flow parameter. The axial component of velocity and flow rate is computed through numerical integration. Graphical results for the mean velocity perturbation function, net flow and axial velocity have been presented and discussed. It is concluded that the net flow rate and Dwall increase in case of the linear Maxwell model, while they decrease in case of the convected Maxwell model. The compressibility parameter shows the opposite results for linear and upper convected Maxwell fluid.

10.
Bioengineering (Basel) ; 9(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36290555

RESUMEN

This research is engaged to explore biological peristaltic transport under the action of an externally applied magnetic field passing through an asymmetric channel which is saturated with porous media. The set of governing partial differential equations for the present peristaltic flow are solved in the absence of a low Reynolds number and long wavelength assumptions. The governing equations are to be solved completely, so that inertial effects can be studied. The numerical simulations and results are obtained by the help of a finite element method based on quadratic six-noded triangular elements equipped with a Galerkin residual procedure. The inertial effects and effects of other pertinent parameters are discussed by plotting graphs based on a finite element (FEM) solution. Trapped bolus is discussed using the graphs of streamlines. The obtained results are also compared with the results given in the literature which are highly convergent. It is concluded that velocity and the number of boluses is enhanced by an increase in Hartmann number and porosity parameter K Increasing inertial forces increase the velocity of flow but increasing values of the porosity parameter lead to a decrease in the pressure gradient. The study elaborates that magnetic field and porosity are useful tools to control the velocity, pressure, and boluses in the peristaltic flow pattern.

11.
Saudi J Biol Sci ; 28(2): 1177-1195, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33262677

RESUMEN

The outbreak of the coronavirus disease 2019 (COVID-19) continues to constitute an international public health emergency. Seasonality is a long-recognized attribute of many viral infections of humans. Nevertheless, the relationship between environmental factors and the spread of infection, particularly for person-to-person communicable diseases, remains poorly understood. This study explores the relationship between environmental factors and the incidence of COVID-19 in 188 countries with reported COVID-19 cases as of April 13, 2020. Here we show that COVID-19 growth rates peaked in temperate zones in the Northern Hemisphere during the outbreak period, while they were lower in tropical zones. The relationships between COVID-19 and environmental factors were resistant to the potentially confounding effects of air pollution, sea level, and population. To prove the effect of those factors, study, and analysis of the prevalence of COVID-19 in Italy, Spain, and China was undertaken. A fuzzy logic system was designed to predict the effects of that variables on the rate of viral spread of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA