Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Mol Microbiol ; 115(2): 175-190, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32979851

RESUMEN

Thermally processed food is an important part of the human diet. Heat-treatment, however, promotes the formation of so-called Amadori rearrangement products, such as fructoselysine. The gut microbiota including Escherichia coli can utilize these compounds as a nutrient source. While the degradation route for fructoselysine is well described, regulation of the corresponding pathway genes frlABCD remained poorly understood. Here, we used bioinformatics combined with molecular and biochemical analyses and show that fructoselysine metabolism in E. coli is tightly controlled at the transcriptional level. The global regulator CRP (CAP) as well as the alternative sigma factor σ32 (RpoH) contribute to promoter activation at high cAMP-levels and inside warm-blooded hosts, respectively. In addition, we identified and characterized a transcriptional regulator FrlR, encoded adjacent to frlABCD, as fructoselysine-6-phosphate specific repressor. Our study provides profound evidence that the interplay of global and substrate-specific regulation is a perfect adaptation strategy to efficiently utilize unusual substrates within the human gut environment.


Asunto(s)
Lisina/análogos & derivados , Secuencia de Aminoácidos/genética , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Proteínas de Choque Térmico/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética
2.
Environ Microbiol ; 24(7): 3229-3241, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35621031

RESUMEN

Thermal food processing leads to the formation of advanced glycation end products (AGE) such as Nε -carboxymethyllysine (CML). Accordingly, these non-canonical amino acids are an important part of the human diet. However, CML is only partially decomposed by our gut microbiota and up to 30% are excreted via faeces and, hence, enter the environment. In frame of this study, we isolated a soil bacterium that can grow on CML as well as its higher homologue Nε -carboxyethyllysine (CEL) as sole source of carbon. Bioinformatic analyses upon whole-genome sequencing revealed a subspecies of Pseudomonas asiatica, which we named 'bavariensis'. We performed a metabolite screening of P. asiatica subsp. bavariensis str. JM1 grown either on CML or CEL and identified N-carboxymethylaminopentanoic acid and N-carboxyethylaminopentanoic acid respectively. We further detected α-aminoadipate as intermediate in the metabolism of CML. These reaction products suggest two routes of degradation: While CEL seems to be predominantly processed from the α-C-atom, decomposition of CML can also be initiated with cleavage of the carboxymethyl group and under the release of acetate. Thus, our study provides novel insights into the metabolism of two important AGEs and how these are processed by environmental bacteria.


Asunto(s)
Productos Finales de Glicación Avanzada , Suelo , Bacterias/metabolismo , Manipulación de Alimentos , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Pseudomonas
3.
Biol Chem ; 403(8-9): 819-858, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35172419

RESUMEN

Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.


Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Aminoácidos/metabolismo , Fenómenos Fisiológicos Bacterianos , Lisina/metabolismo , Proteínas/metabolismo
4.
J Bacteriol ; 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32482722

RESUMEN

Bacteria have evolved different signaling systems to sense and adapt to acid stress. One of these systems, the CadABC-system, responds to a combination of low pH and lysine availability. In Escherichia coli, the two signals are sensed by the pH sensor and transcription activator CadC and the co-sensor LysP, a lysine-specific transporter. Activated CadC promotes the transcription of the cadBA operon, which codes for the lysine decarboxylase CadA and the lysine/cadaverine antiporter CadB. The copy number of CadC is controlled translationally. Using a bioinformatics approach, we identified the presence of CadC with ribosomal stalling motifs together with LysP in species of the Enterobacteriaceae family. In contrast, we identified CadC without stalling motifs in species of the Vibrionaceae family, but the LysP co-sensor was not identified. Therefore, we compared the output of the Cad system in single cells of the distantly related organisms E. coli and V. campbellii using fluorescently-tagged CadB as the reporter. We observed a heterogeneous output in E. coli, and all the V. campbellii cells produced CadB. The copy number of the pH sensor CadC in E. coli was extremely low (≤4 molecules per cell), but it was 10-fold higher in V. campbellii An increase in the CadC copy number in E. coli correlated with a decrease in heterogeneous behavior. This study demonstrated how small changes in the design of a signaling system allow a homogeneous output and, thus, adaptation of Vibrio species that rely on the CadABC-system as the only acid resistance system.Importance Acid resistance is an important property of bacteria, such as Escherichia coli, to survive acidic environments like the human gastrointestinal tract. E. coli possess both passive and inducible acid resistance systems to counteract acidic environments. Thus, E. coli evolved sophisticated signaling systems to sense and appropriately respond to environmental acidic stress by regulating the activity of its three inducible acid resistance systems. One of these systems is the Cad system that is only induced under moderate acidic stress in a lysine-rich environment by the pH-responsive transcriptional regulator CadC. The significance of our research is in identifying the molecular design of the Cad systems in different Proteobacteria and their target expression noise at single cell level during acid stress conditions.

5.
Org Biomol Chem ; 18(35): 6823-6828, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32936181

RESUMEN

Despite its potential importance for bacterial virulence, protein rhamnosylation has not yet been sufficiently studied. Specific anti-SerRha, anti-ThrRha and anti-AsnRha antibodies allowed the identification of previously unknown monorhamnosylated proteins in cytosol and membrane fractions of bacterial cell lysates. Mapping of the complete rhamnoproteome in pathogens should facilitate development of targeted therapies against bacterial infections.


Asunto(s)
Bacterias
6.
Biol Chem ; 400(11): 1397-1427, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31188742

RESUMEN

Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica
7.
PLoS Comput Biol ; 14(2): e1005987, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29389943

RESUMEN

Translation of consecutive prolines causes ribosome stalling, which is alleviated but cannot be fully compensated by the elongation factor P. However, the presence of polyproline motifs in about one third of the E. coli proteins underlines their potential functional importance, which remains largely unexplored. We conducted an evolutionary analysis of polyproline motifs in the proteomes of 43 E. coli strains and found evidence of evolutionary selection against translational stalling, which is especially pronounced in proteins with high translational efficiency. Against the overall trend of polyproline motif loss in evolution, we observed their enrichment in the vicinity of translational start sites, in the inter-domain regions of multi-domain proteins, and downstream of transmembrane helices. Our analysis demonstrates that the time gain caused by ribosome pausing at polyproline motifs might be advantageous in protein regions bracketing domains and transmembrane helices. Polyproline motifs might therefore be crucial for co-translational folding and membrane insertion.


Asunto(s)
Secuencias de Aminoácidos , Escherichia coli/metabolismo , Extensión de la Cadena Peptídica de Translación , Péptidos/química , Biosíntesis de Proteínas , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Factores de Elongación de Péptidos/metabolismo , Filogenia , Pliegue de Proteína , Proteoma/metabolismo , Proteómica , Ribosomas/metabolismo
8.
Mol Microbiol ; 99(2): 219-35, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26416626

RESUMEN

Synthesis of polyproline proteins leads to translation arrest. To overcome this ribosome stalling effect, bacteria depend on a specialized translation elongation factor P (EF-P), being orthologous and functionally identical to eukaryotic/archaeal elongation factor e/aIF-5A (recently renamed 'EF5'). EF-P binds to the stalled ribosome between the peptidyl-tRNA binding and tRNA-exiting sites, and stimulates peptidyl-transferase activity, thus allowing translation to resume. In their active form, both EF-P and e/aIF-5A are post-translationally modified at a positively charged residue, which protrudes toward the peptidyl-transferase center when bound to the ribosome. While archaeal and eukaryotic IF-5A strictly depend on (deoxy-) hypusination (hypusinylation) of a conserved lysine, bacteria have evolved diverse analogous modification strategies to activate EF-P. In Escherichia coli and Salmonella enterica a lysine is extended by ß-lysinylation and subsequently hydroxylated, whereas in Pseudomonas aeruginosa and Shewanella oneidensis an arginine in the equivalent position is rhamnosylated. Inactivation of EF-P, or the corresponding modification systems, reduces not only bacterial fitness, but also impairs virulence. Here, we review the function of EF-P and IF-5A and their unusual posttranslational protein modifications.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/metabolismo , Factores de Elongación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Factores de Elongación de Péptidos/genética , Factores de Iniciación de Péptidos/genética , Péptidos/genética , Procesamiento Proteico-Postraduccional , Ribosomas/metabolismo
9.
Nat Chem Biol ; 11(4): 266-70, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25686373

RESUMEN

Ribosome stalling at polyproline stretches is common and fundamental. In bacteria, translation elongation factor P (EF-P) rescues such stalled ribosomes, but only when it is post-translationally activated. In Escherichia coli, activation of EF-P is achieved by (R)-ß-lysinylation and hydroxylation of a conserved lysine. Here we have unveiled a markedly different modification strategy in which a conserved arginine of EF-P is rhamnosylated by a glycosyltransferase (EarP) using dTDP-L-rhamnose as a substrate. This is to our knowledge the first report of N-linked protein glycosylation on arginine in bacteria and the first example in which a glycosylated side chain of a translation elongation factor is essential for function. Arginine-rhamnosylation of EF-P also occurs in clinically relevant bacteria such as Pseudomonas aeruginosa. We demonstrate that the modification is needed to develop pathogenicity, making EarP and dTDP-L-rhamnose-biosynthesizing enzymes ideal targets for antibiotic development.


Asunto(s)
Arginina/química , Lisina/química , Factores de Elongación de Péptidos/química , Ramnosa/química , Ribosomas/química , Shewanella/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Cromatografía Liquida , Cristalografía por Rayos X , Escherichia coli/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Humanos , Hidroxilación , Cadenas de Markov , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Filogenia , Biosíntesis de Proteínas , Pseudomonas aeruginosa/enzimología , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Espectrometría de Masas en Tándem
10.
Nucleic Acids Res ; 42(16): 10711-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25143529

RESUMEN

The polymerization of amino acids into proteins occurs on ribosomes, with the rate influenced by the amino acids being polymerized. The imino acid proline is a poor donor and acceptor for peptide-bond formation, such that translational stalling occurs when three or more consecutive prolines (PPP) are encountered by the ribosome. In bacteria, stalling at PPP motifs is rescued by the elongation factor P (EF-P). Using SILAC mass spectrometry of Escherichia coli strains, we identified a subset of PPP-containing proteins for which the expression patterns remained unchanged or even appeared up-regulated in the absence of EF-P. Subsequent analysis using in vitro and in vivo reporter assays revealed that stalling at PPP motifs is influenced by the sequence context upstream of the stall site. Specifically, the presence of amino acids such as Cys and Thr preceding the stall site suppressed stalling at PPP motifs, whereas amino acids like Arg and His promoted stalling. In addition to providing fundamental insight into the mechanism of peptide-bond formation, our findings suggest how the sequence context of polyproline-containing proteins can be modulated to maximize the efficiency and yield of protein production.


Asunto(s)
Proteínas de Escherichia coli/química , Péptidos , Biosíntesis de Proteínas , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos/análisis , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Péptidos/análisis , Ribosomas/metabolismo , Regulación hacia Arriba
11.
Proc Natl Acad Sci U S A ; 110(38): 15265-70, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24003132

RESUMEN

Ribosomes are the protein synthesizing factories of the cell, polymerizing polypeptide chains from their constituent amino acids. However, distinct combinations of amino acids, such as polyproline stretches, cannot be efficiently polymerized by ribosomes, leading to translational stalling. The stalled ribosomes are rescued by the translational elongation factor P (EF-P), which by stimulating peptide-bond formation allows translation to resume. Using metabolic stable isotope labeling and mass spectrometry, we demonstrate in vivo that EF-P is important for expression of not only polyproline-containing proteins, but also for specific subsets of proteins containing diprolyl motifs (XPP/PPX). Together with a systematic in vitro and in vivo analysis, we provide a distinct hierarchy of stalling triplets, ranging from strong stallers, such as PPP, DPP, and PPN to weak stallers, such as CPP, PPR, and PPH, all of which are substrates for EF-P. These findings provide mechanistic insight into how the characteristics of the specific amino acid substrates influence the fundamentals of peptide bond formation.


Asunto(s)
Escherichia coli K12/fisiología , Factores de Elongación de Péptidos/metabolismo , Prolina/metabolismo , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Secuencias de Aminoácidos/genética , Cromatografía Liquida , Escherichia coli K12/metabolismo , Humanos , Proteómica , Espectrometría de Masas en Tándem , beta-Galactosidasa
12.
Biospektrum (Heidelb) ; 27(5): 516-517, 2021.
Artículo en Alemán | MEDLINE | ID: mdl-34511736
15.
J Bacteriol ; 195(3): 482-92, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23161031

RESUMEN

In all species of the genus Shewanella, the redox-sensing Arc two-component system consists of the response regulator ArcA, the sensor kinase ArcS, and the separate phosphotransfer protein HptA. Compared to its counterpart ArcB in Escherichia coli, ArcS has a significantly different domain structure. Resequencing and reannotation revealed that in the N-terminal part, ArcS possesses a periplasmic CaChe-sensing domain bracketed by two transmembrane domains and, moreover, that ArcS has two cytoplasmic PAS-sensing domains and two receiver domains, compared to a single one of each in ArcB. Here, we used a combination of in vitro phosphotransfer studies on purified proteins and phenotypic in vivo mutant analysis to determine the roles of the different domains in ArcS function. The analysis revealed that phosphotransfer occurs from and toward the response regulator ArcA and involves mainly the C-terminal RecII domain. However, RecI also can receive a phosphate from HptA. In addition, the PAS-II domain, located upstream of the histidine kinase domain, is crucial for function. The results support a model in which phosphorylation of RecI stimulates histidine kinase activity of ArcS in order to maintain an appropriate level of phosphorylated ArcA according to environmental conditions. In addition, the study reveals some fundamental mechanistic differences between ArcS/HptA and ArcB with respect to signal perception and phosphotransfer despite functional conservation of the Arc system in Shewanella and E. coli.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Shewanella/enzimología , Shewanella/metabolismo , Sustitución de Aminoácidos , Proteínas de la Membrana/genética , Mutación , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Shewanella/genética , Transcripción Genética
16.
Curr Opin Microbiol ; 76: 102393, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37844449

RESUMEN

Proteins are an important part of our regular diet. During food processing, their amino acid composition can be chemically altered by the reaction of free amino groups with sugars - a process termed glycation. The resulting Maillard reaction products (MRPs) have low bioavailability and thus predominantly end up in the colon where they encounter our gut microbiota. In the following review, we summarize bacterial strategies to efficiently metabolize these non-canonical amino acids. A particular focus will be on the complex regulatory mechanisms that allow a tightly controlled expression of metabolic genes to successfully occupy the ecological niches that result from the chemical diversity of MRPs.


Asunto(s)
Productos Finales de Glicación Avanzada , Reacción de Maillard , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Manipulación de Alimentos/métodos , Proteínas , Dieta
18.
Sci Rep ; 11(1): 11991, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099824

RESUMEN

L-Rhamnose is an important monosaccharide both as nutrient source and as building block in prokaryotic glycoproteins and glycolipids. Generation of those composite molecules requires activated precursors being provided e. g. in form of nucleotide sugars such as dTDP-ß-L-rhamnose (dTDP-L-Rha). dTDP-L-Rha is synthesized in a conserved 4-step reaction which is canonically catalyzed by the enzymes RmlABCD. An intact pathway is especially important for the fitness of pseudomonads, as dTDP-L-Rha is essential for the activation of the polyproline specific translation elongation factor EF-P in these bacteria. Within the scope of this study, we investigated the dTDP-L-Rha-biosynthesis route of Pseudomonas putida KT2440 with a focus on the last two steps. Bioinformatic analysis in combination with a screening approach revealed that epimerization of dTDP-4-keto-6-deoxy-D-glucose to dTDP-4-keto-6-deoxy-L-mannose is catalyzed by the two paralogous proteins PP_1782 (RmlC1) and PP_0265 (RmlC2), whereas the reduction to the final product is solely mediated by PP_1784 (RmlD). Thus, we also exclude the distinct RmlD homolog PP_0500 and the genetically linked nucleoside diphosphate-sugar epimerase PP_0501 to be involved in dTDP-L-Rha formation, other than suggested by certain databases. Together our analysis contributes to the molecular understanding how this important nucleotide-sugar is synthesized in pseudomonads.


Asunto(s)
Carbohidrato Epimerasas/metabolismo , Desoxiglucosa/análogos & derivados , Escherichia coli/enzimología , Pseudomonas putida/metabolismo , Carbohidrato Epimerasas/genética , Catálisis , Bases de Datos Factuales , Desoxiglucosa/metabolismo , Desoxirribonucleótidos/metabolismo , Biblioteca de Genes , Azúcares de Nucleósido Difosfato/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Nucleótidos de Timina/metabolismo
19.
FEBS J ; 288(2): 663-677, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32337775

RESUMEN

Canonically, tRNA synthetases charge tRNA. However, the lysyl-tRNA synthetase paralog EpmA catalyzes the attachment of (R)-ß-lysine to the ε-amino group of lysine 34 of the translation elongation factor P (EF-P) in Escherichia coli. This modification is essential for EF-P-mediated translational rescue of ribosomes stalled at consecutive prolines. In this study, we determined the kinetics of EpmA and its variant EpmA_A298G to catalyze the post-translational modification of K34 in EF-P with eight noncanonical substrates. In addition, acetylated EF-P was generated using an amber suppression system. The impact of these synthetically modified EF-P variants on in vitro translation of a polyproline-containing NanoLuc luciferase reporter was analyzed. Our results show that natural (R)-ß-lysylation was more effective in rescuing stalled ribosomes than any other synthetic modification tested. Thus, our work not only provides new biochemical insights into the function of EF-P, but also opens a new route to post-translationally modify proteins using EpmA.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Lisina-ARNt Ligasa/genética , Factores de Elongación de Péptidos/genética , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Acetilación , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Genes Reporteros , Cinética , Luciferasas/genética , Luciferasas/metabolismo , Lisina/genética , Lisina/metabolismo , Lisina-ARNt Ligasa/metabolismo , Factores de Elongación de Péptidos/metabolismo , Mutación Puntual , Prolina/genética , Prolina/metabolismo , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Ribosomas/ultraestructura , Especificidad por Sustrato
20.
Commun Biol ; 4(1): 589, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34002016

RESUMEN

The speed of mRNA translation depends in part on the amino acid to be incorporated into the nascent chain. Peptide bond formation is especially slow with proline and two adjacent prolines can even cause ribosome stalling. While previous studies focused on how the amino acid context of a Pro-Pro motif determines the stalling strength, we extend this question to the mRNA level. Bioinformatics analysis of the Escherichia coli genome revealed significantly differing codon usage between single and consecutive prolines. We therefore developed a luminescence reporter to detect ribosome pausing in living cells, enabling us to dissect the roles of codon choice and tRNA selection as well as to explain the genome scale observations. Specifically, we found a strong selective pressure against CCC/U-C, a sequon causing ribosomal frameshifting even under wild-type conditions. On the other hand, translation efficiency as positive evolutionary driving force led to an overrepresentation of CCG. This codon is not only translated the fastest, but the corresponding prolyl-tRNA reaches almost saturating levels. By contrast, CCA, for which the cognate prolyl-tRNA amounts are limiting, is used to regulate pausing strength. Thus, codon selection both in discrete positions but especially in proline codon pairs can tune protein copy numbers.


Asunto(s)
Codón , Escherichia coli/genética , Extensión de la Cadena Peptídica de Translación , Prolina/genética , Biosíntesis de Proteínas , ARN de Transferencia de Prolina/genética , Ribosomas/fisiología , Selección Genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA