Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Transfusion ; 63(8): 1481-1487, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37417787

RESUMEN

BACKGROUND: Prehospital transfusion is a way of improving the management of hemorrhagic shock. In France, prehospital transfusion is struggling to develop, both because of logistical difficulties and particularly restrictive legislation. To comply with this, we propose to store the blood products (BPs) in ground ambulances with refrigerated boxes allowing remote continuous monitoring of storage conditions, called "NelumBox" (Tec4med Lifescience GmbH). To open them, the ambulance's team needs a code that is only given by the Transfusion Center if the request meets all required regulatory criteria. STUDY DESIGN AND METHODS: We conducted a prospective simulation-based feasibility study using dummy BPs. Two ambulances were equipped. Simulations were triggered unexpectedly, including during on-call hours. The ability to quickly access the BPs was the main judgment criterion. The quality of hemovigilance during these simulations was also examined. RESULTS: Twenty-two simulations were performed. The ambulance's team was able to access the BPs in 100% of cases. The average waiting time for receiving the unlocking code was 5 min 27 s (SD = 2 min 12 s, MAX = 12 min 00 s). The transfusion traceability was compliant with regulations in 100% of cases. The transfusion center was able to remotely monitor BPs storage conditions for the entire duration of their stockage in the NelumBox. DISCUSSION: The present procedure is efficient, repeatable, and fast. It guarantees a strict transfusion safety without slowdown a severe trauma management, while complying with French regulations.


Asunto(s)
Servicios Médicos de Urgencia , Choque Hemorrágico , Heridas y Lesiones , Humanos , Ambulancias , Estudios de Factibilidad , Choque Hemorrágico/etiología , Transfusión Sanguínea , Francia , Heridas y Lesiones/complicaciones
2.
J Pathol ; 252(4): 451-464, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32918753

RESUMEN

Skin grafting is a surgical method of cutaneous reconstruction, which provides volumetric replacement in wounds unable to heal by primary intention. Clinically, full-thickness skin grafts (FTSGs) are placed in aesthetically sensitive and mechanically demanding areas such as the hands, face, and neck. Complete or partial graft failure is the primary complication associated with this surgical procedure. Strategies aimed at improving the rate of skin graft integration will reduce the incidence of graft failure. Cold atmospheric plasma (CAP) is an emerging technology offering innovative clinical applications. The aim of this study was to test the therapeutic potential of CAP to improve wound healing and skin graft integration into the recipient site. In vitro models that mimic wound healing were used to investigate the ability of CAP to enhance cellular migration, a key factor in cutaneous tissue repair. We demonstrated that CAP enhanced the migration of epidermal keratinocytes and dermal fibroblasts. This increased cellular migration was possibly induced by the low dose of reactive oxygen and nitrogen species produced by CAP. Using a mouse model of burn wound reconstructed with a full-thickness skin graft, we showed that wounds treated with CAP healed faster than did control wounds. Immunohistochemical wound analysis showed that CAP treatment enhanced the expression of the dermal-epidermal junction components, which are vital for successful skin graft integration. CAP treatment was characterised by increased levels of Tgfbr1 mRNA and collagen I protein in vivo, suggesting enhanced wound maturity and extracellular matrix deposition. Mechanistically, we show that CAP induced the activation of the canonical SMAD-dependent TGF-ß1 pathway in primary human dermal fibroblasts, which may explain the increased collagen I synthesis in vitro. These studies revealed that CAP improved wound repair and skin graft integration via mechanisms involving extracellular matrix formation. CAP offers a novel approach for treating cutaneous wounds and skin grafts. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Quemaduras/cirugía , Matriz Extracelular/fisiología , Queratinocitos/fisiología , Gases em Plasma/uso terapéutico , Repitelización/fisiología , Trasplante de Piel/métodos , Cicatrización de Heridas/fisiología , Animales , Quemaduras/fisiopatología , Movimiento Celular/fisiología , Proliferación Celular , Ratones , Modelos Animales , Fenómenos Fisiológicos de la Piel , Resultado del Tratamiento
3.
Small ; 16(4): e1902224, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31880410

RESUMEN

Extracellular matrices (ECM) rich in type I collagen exhibit characteristic anisotropic ultrastructures. Nevertheless, working in vitro with this biomacromolecule remains challenging. When processed, denaturation of the collagen molecule is easily induced in vitro avoiding proper fibril self-assembly and further hierarchical order. Here, an innovative approach enables the production of highly concentrated injectable collagen microparticles, based on collagen molecules self-assembly, thanks to the use of spray-drying process. The versatility of the process is shown by performing encapsulation of secretion products of gingival mesenchymal stem cells (gMSCs), which are chosen as a bioactive therapeutic product for their potential efficiency in stimulating the regeneration of a damaged ECM. The injection of collagen microparticles in a cell culture medium results in a locally organized fibrillar matrix. The efficiency of this approach for making easily handleable collagen microparticles for encapsulation and injection opens perspectives in active tissue regeneration and 3D bioprinted scaffolds.


Asunto(s)
Aerosoles , Colágeno , Células Madre Mesenquimatosas , Células Cultivadas , Matriz Extracelular/química , Encía/citología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Andamios del Tejido/química
4.
Haematologica ; 105(4): 987-9998, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31289201

RESUMEN

Targeting chemoresistant malignant cells is one of the current major challenges in oncology. Therefore, it is mandatory to refine the characteristics of these cells to monitor their survival and develop adapted therapies. This is of particular interest in acute myeloid leukemia (AML), for which the 5-year survival rate only reaches 30%, regardless of the prognosis. The role of the microenvironment is increasingly reported to be a key regulator for blast survival. In this context, we demonstrate that contact with mesenchymal stromal cells promotes a better survival of blasts in culture in the presence of anthracycline through the activation of ABC transporters. Stroma-dependent ABC transporter activation leads to the induction of a Side Population (SP) phenotype in a subpopulation of primary leukemia blasts through alpha (α)4 engagement. The stroma-promoting effect is reversible and is observed with stromal cells isolated from either healthy donors or leukemia patients. Blasts expressing an SP phenotype are mostly quiescent and are chemoresistant in vitro and in vivo in patient-derived xenograft mouse models. At the transcriptomic level, blasts from the SP are specifically enriched in the drug metabolism program. This detoxification signature engaged in contact with mesenchymal stromal cells represents promising ways to target stroma-induced chemoresistance of AML cells.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Transportadoras de Casetes de Unión a ATP/genética , Animales , Resistencia a Antineoplásicos/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones , Células del Estroma , Microambiente Tumoral
5.
J Pathol ; 249(3): 368-380, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31265742

RESUMEN

Treatment with cold atmospheric plasma (CAP) has been reported to promote wound healing in animals. However, how this process is mediated remains unclear. In this study we examined the mechanisms which underlie the improved wound healing effects of CAP and the roles of associated reactive oxygen and nitrogen species (RONS), which are generated by plasma. By using in vitro models which mimicked various steps of angiogenesis, we demonstrated that CAP triggered the production of nitric oxide (NO), and enhanced cell migration and the assembly of endothelial cells into vessel-like structures. These are both hallmarks of the proliferative phase of wound healing. Using a mouse model of a third-degree burn wound, we went on to show that CAP treatment was associated with enhanced angiogenesis, characterised by accelerated in vivo wound healing and increased cellular proliferation. Here, CAP significantly increased the in vivo production of endothelial NO synthase (eNOS), an enzyme that catalyses NO synthesis in endothelial cells, and significantly increased the expression of pro-angiogenic PDGFRß and CD31 markers in mouse wounds. Mechanistically, we showed that CAP induced eNOS phosphorylation and activation, thereby increasing the levels of endogenous NO in endothelial cells. Increased NO generation facilitated by CAP further stimulated important pro-angiogenic VEGFA/VEGFR2 signalling in vitro. This proof-of-concept study may guide future efforts aimed at addressing the use of physical plasma and its therapeutic applications in a variety of pathological scenarios. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Quemaduras/terapia , Helio/administración & dosificación , Neovascularización Fisiológica , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Gases em Plasma/administración & dosificación , Trasplante de Piel , Piel/irrigación sanguínea , Piel/enzimología , Cicatrización de Heridas , Animales , Quemaduras/enzimología , Quemaduras/patología , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Necrosis , Donantes de Óxido Nítrico/administración & dosificación , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Fosforilación , Transducción de Señal , Piel/lesiones , Piel/patología , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
Eur J Immunol ; 47(12): 2113-2123, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28762530

RESUMEN

We and others have demonstrated that adipose tissue is a reservoir for HIV. Evaluation of the mechanisms responsible for viral persistence may lead to ways of reducing these reservoirs. Here, we evaluated the immune characteristics of adipose tissue in HIV-infected patients receiving antiretroviral therapy (ART) and in non-HIV-infected patients. We notably sought to determine whether adipose tissue's intrinsic properties and/or HIV induced alteration of the tissue environment may favour viral persistence. ART-controlled HIV infection was associated with a difference in the CD4/CD8 T-cell ratio and an elevated proportion of Treg cells in subcutaneous adipose tissue. No changes in Th1, Th2 and Th17 cell proportions or activation markers expression on T cell (Ki-67, HLA-DR) could be detected, and the percentage of CD69-expressing resident memory CD4+ T cells was not affected. Overall, our results indicate that adipose-tissue-resident CD4+ T cells are not extensively activated during HIV infection. PD-1 was expressed by a high proportion of tissue-resident memory CD4+ T cells in both HIV-infected patients and non-HIV-infected patients. Our findings suggest that adipose tissue's intrinsic immunomodulatory properties may limit immune activation and thus may strongly contribute to viral persistence.


Asunto(s)
Tejido Adiposo/inmunología , Linfocitos T CD4-Positivos/inmunología , Microambiente Celular/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Tejido Adiposo/metabolismo , Tejido Adiposo/virología , Adulto , Anciano , Anciano de 80 o más Años , Antivirales/uso terapéutico , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Reservorios de Enfermedades/virología , Femenino , Citometría de Flujo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/metabolismo
7.
Blood ; 123(2): 191-202, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24277075

RESUMEN

In addition to its well-known effect on migration and homing of hematopoietic stem/progenitor cells (HSPCs), CXCL12 chemokine also exhibits a cell cycle and survival-promoting factor for human CD34(+) HSPCs. CXCR4 was suggested to be responsible for CXCL12-induced biological effects until the recent discovery of its second receptor, CXCR7. Until now, the participation of CXCR7 in CXCL12-induced HSPC cycling and survival is unknown. We show here that CXCL12 was capable of binding CXCR7 despite its scarce expression at CD34(+) cell surface. Blocking CXCR7 inhibited CXCL12-induced Akt activation as well as the percentage of CD34(+) cells in cycle, colony formation, and survival, demonstrating its participation in CXCL12-induced functional effects in HSPCs. At steady state, CXCR7 and ß-arrestin2 co-localized near the plasma membrane of CD34(+) cells. After CXCL12 treatment, ß-arrestin2 translocated to the nucleus, and this required both CXCR7 and CXCR4. Silencing ß-arrestin expression decreased CXCL12-induced Akt activation in CD34(+) cells. Our results demonstrate for the first time the role of CXCR7, complementary to that played by CXCR4, in the control of HSPC cycling, survival, and colony formation induced by CXCL12. We also provide evidence for the involvement of ß-arrestins as signaling hubs downstream of both CXCL12 receptors in primary human HSPCs.


Asunto(s)
Arrestinas/metabolismo , Ciclo Celular , Quimiocina CXCL12/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CXCR/metabolismo , Antígenos CD34/metabolismo , Supervivencia Celular , Ensayo de Unidades Formadoras de Colonias , Activación Enzimática , Humanos , Espacio Intracelular/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , beta-Arrestinas
8.
J Pathol ; 236(2): 229-40, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25712044

RESUMEN

Neurological heterotopic ossification (NHO) is the abnormal formation of bone in soft tissues as a consequence of spinal cord or traumatic brain injury. NHO causes pain, ankyloses, vascular and nerve compression and delays rehabilitation in this high-morbidity patient group. The pathological mechanisms leading to NHO remain unknown and consequently there are no therapeutic options to prevent or reduce NHO. Genetically modified mouse models of rare genetic forms of heterotopic ossification (HO) exist, but their relevance to NHO is questionable. Consequently, we developed the first model of spinal cord injury (SCI)-induced NHO in genetically unmodified mice. Formation of NHO, measured by micro-computed tomography, required the combination of both SCI and localized muscular inflammation. Our NHO model faithfully reproduced many clinical features of NHO in SCI patients and both human and mouse NHO tissues contained macrophages. Muscle-derived mesenchymal progenitors underwent osteoblast differentiation in vitro in response to serum from NHO mice without additional exogenous osteogenic stimuli. Substance P was identified as a candidate NHO systemic neuropeptide, as it was significantly elevated in the serum of NHO patients. However, antagonism of substance P receptor in our NHO model only modestly reduced the volume of NHO. In contrast, ablation of phagocytic macrophages with clodronate-loaded liposomes reduced the size of NHO by 90%, supporting the conclusion that NHO is highly dependent on inflammation and phagocytic macrophages in soft tissues. Overall, we have developed the first clinically relevant model of NHO and demonstrated that a combined insult of neurological injury and soft tissue inflammation drives NHO pathophysiology.


Asunto(s)
Macrófagos/fisiología , Miositis/etiología , Osificación Heterotópica/etiología , Traumatismos de la Médula Espinal/complicaciones , Animales , Cardiotoxinas/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones Endogámicos C57BL , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Paraplejía/complicaciones , Células Madre/fisiología
9.
Stem Cells ; 32(1): 290-300, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24123639

RESUMEN

Mesenchymal stem cells (MSCs) play a fundamental role in allograft rejection and graft-versus-host disease through their immunosuppressive abilities. Recently, Toll-like receptors (TLR) have been shown to modulate MSC functions. The aim of this study was to investigate the effects of several TLR ligands on the interaction between MSC and natural killer (NK) cells. Our results show that TLR-primed adult bone marrow and embryonic MSC are more resistant than unprimed MSC to IL-2-activated NK-induced killing. Such protection can be explained by the modulation of Natural Killer group 2D ligands major histocompatibility complex class I chain A and ULBP3 and DNAM-1 ligands by TLR-primed MSC. These results indicate that MSCs are able to adapt their immuno-behavior in an inflammatory context, decreasing their susceptibility to NK killing. In addition, TLR3 but not TLR4-primed MSC enhance their suppressive functions against NK cells. However, the efficiency of this response is heterogeneous, even if the phenotypes of different analyzed MSC are rather homogeneous. The consequences could be important in MSC-mediated cell therapy, since the heterogeneity of adult MSC responders may be explored in order to select the more efficient responders.


Asunto(s)
Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Receptores Toll-Like/metabolismo , Citometría de Flujo , Células HeLa , Humanos , Células K562 , Ligandos , Células Madre Mesenquimatosas/inmunología
10.
Haematologica ; 100(6): 757-67, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25840601

RESUMEN

Primary myelofibrosis is characterized by clonal myeloproliferation, dysmegakaryopoiesis, extramedullary hematopoiesis associated with myelofibrosis and altered stroma in the bone marrow and spleen. The expression of CD9, a tetraspanin known to participate in megakaryopoiesis, platelet formation, cell migration and interaction with stroma, is deregulated in patients with primary myelofibrosis and is correlated with stage of myelofibrosis. We investigated whether CD9 participates in the dysmegakaryopoiesis observed in patients and whether it is involved in the altered interplay between megakaryocytes and stromal cells. We found that CD9 expression was modulated during megakaryocyte differentiation in primary myelofibrosis and that cell surface CD9 engagement by antibody ligation improved the dysmegakaryopoiesis by restoring the balance of MAPK and PI3K signaling. When co-cultured on bone marrow mesenchymal stromal cells from patients, megakaryocytes from patients with primary myelofibrosis displayed modified behaviors in terms of adhesion, cell survival and proliferation as compared to megakaryocytes from healthy donors. These modifications were reversed after antibody ligation of cell surface CD9, suggesting the participation of CD9 in the abnormal interplay between primary myelofibrosis megakaryocytes and stroma. Furthermore, silencing of CD9 reduced CXCL12 and CXCR4 expression in primary myelofibrosis megakaryocytes as well as their CXCL12-dependent migration. Collectively, our results indicate that CD9 plays a role in the dysmegakaryopoiesis that occurs in primary myelofibrosis and affects interactions between megakaryocytes and bone marrow stromal cells. These results strengthen the "bad seed in bad soil" hypothesis that we have previously proposed, in which alterations of reciprocal interactions between hematopoietic and stromal cells participate in the pathogenesis of primary myelofibrosis.


Asunto(s)
Megacariocitos/metabolismo , Mielofibrosis Primaria/metabolismo , Células del Estroma/metabolismo , Tetraspanina 29/fisiología , Trombopoyesis/fisiología , Técnicas de Cocultivo , Humanos , Megacariocitos/patología , Mielofibrosis Primaria/patología , Células del Estroma/patología
11.
Bull Acad Natl Med ; 199(4-5): 501-14, 2015.
Artículo en Francés | MEDLINE | ID: mdl-27509668

RESUMEN

Mesenchymal stromal cells are multipotent cells found in a large number of adult tissues. Their ability to participate in the repair of these damaged tissues is the origin of the enthusiasm that they elicit in the field of cell therapy. It gradually became apparent that their ability to change a pathological environment is more related to their ability to modulate the behavior of other cell types than their capacity of diferentiation. Recent years have expanded the scope of our knowledge about their way of communication with their environment but also the amount of information that they receive from this environment. In this brief review, we will present some of the mechanisms by which MSCs can communicate remotely with other cell types and how it currently appears possible to direct the secretion pattern of these cells.


Asunto(s)
Comunicación Celular/fisiología , Células Madre Mesenquimatosas/fisiología , Comunicación Paracrina/fisiología , Adulto , Exosomas/metabolismo , Humanos , Factores Inmunológicos/metabolismo , Factores Inmunológicos/farmacología
12.
Angiogenesis ; 16(4): 821-36, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23748743

RESUMEN

Circulating endothelial progenitor cells (cEPC) are capable of homing to neovascularisation sites, in which they proliferate and differentiate into endothelial cells. Transplantation of cEPC-derived cells, in particular those isolated from umbilical cord blood (UCB), has emerged as a promising approach in the treatment of cardio-vascular diseases. After in vivo transplantation, these cells may be exposed to local or systemic inflammation or pathogens, of which they are a common target. Because Toll-like receptors (TLR) are critical in detecting pathogens and in initiating inflammatory responses, we hypothesized that TLR may govern UCB cEPC-derived cells function. While these cells expressed almost all TLR, we found that only TLR3 dramatically impaired cell properties. TLR3 activation inhibited cell proliferation, modified cell cycle entry, impaired the in vitro angiogenic properties and induced pro-inflammatory cytokines production. The anti-angiogenic effect of TLR3 activation was confirmed in vivo in a hind-limb ischemic mice model. Moreover, TLR3 activation consistently leads to an upregulation of miR-29b, -146a and -155 and to a deregulation of cytoskeleton and cell cycle regulator. Hence, TLR3 activation is likely to be a key regulator of cEPC-derived cells properties.


Asunto(s)
Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/fisiología , Neovascularización Fisiológica/fisiología , Receptor Toll-Like 3/fisiología , Animales , Ciclo Celular , División Celular , Movimiento Celular , Células Cultivadas , Citocinas/biosíntesis , Citocinas/genética , Células Endoteliales/citología , Endotelio Vascular/fisiología , Femenino , Sangre Fetal/citología , Regulación de la Expresión Génica/fisiología , Miembro Posterior/irrigación sanguínea , Humanos , Recién Nacido , Isquemia/cirugía , Ligandos , Lipoproteínas LDL/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/antagonistas & inhibidores , MicroARNs/biosíntesis , MicroARNs/genética , Oligonucleótidos/farmacología , Poli I-C/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Toll-Like 3/agonistas , Receptor Toll-Like 3/biosíntesis , Receptores Toll-Like/agonistas , Receptores Toll-Like/biosíntesis , Receptores Toll-Like/genética , Factor de Necrosis Tumoral alfa/farmacología , Cicatrización de Heridas
13.
J Control Release ; 355: 501-514, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36764527

RESUMEN

A new paradigm has emerged recently, which consists in shifting from cell therapy to a more flexible acellular "extracellular vesicle (EV) therapy" approach, thereby opening a new and promising field in nanomedicine. Important technical limitations have still to be addressed for the large-scale production of clinical-grade EV. Cells are cultured in media supplemented with human platelet lysate (hPL) (xenogenic-free) or GMP-grade fetal calf serum (FCS). However, these additives contain high amounts of EV that cannot be separated from cell-secreted -EV. Therefore, cells are generally maintained in additive-free medium during the EV secretion phase, however this can substantially limit their survival. In the present work, we developed a method to prepare vesicle-free hPL (EV-free hPL) or vesicle-free FCS (EV-free FCS) using tangential flow filtration (TFF). We show a very efficient EV depletion (>98%) for both pure hPL and FCS, with a highly conserved protein content. Culture medium containing our EV-free additives supported the survival of human bone marrow MSC (BM-MSC). MSC could survive at least 216 h, their conditioned medium being collected and changed every 72 h. Both the cell survival and the cumulative EV production were substantially higher than in the starving conditions classically used for EV production. In EV-free hPL containing medium, we show that purified EV kept their morphologic and molecular characteristics throughout the production. Finally, we tested our additives with 3 other cell types, human primary Endothelial Colony Forming Cells (ECFC) and two non-adherent human cell lines, Jurkat and THP-1. We confirmed that both EV-free hPL and FCS were able to maintain cell survival and EV production for at least 216 h. Our method provides therefore a new option to help producing large amounts of EV from virtually any mammalian cells, particularly those that do not tolerate starvation. This method can apply to any animal serum for research and development purpose. Moreover, EV-free hPL is clinical-grade compatible and allows preparing xenobiotic-free media for massive therapeutic EV production in both 2D (cell plates) and 3D (bioreactor) setting.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Humanos , Células Cultivadas , Diferenciación Celular , Proliferación Celular , Plaquetas/metabolismo , Técnicas de Cultivo de Célula , Mamíferos
14.
J Invest Dermatol ; 143(1): 105-114.e12, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007550

RESUMEN

Deciphering the pathways that regulate human epidermal precursor cell fate is necessary for future developments in skin repair and graft bioengineering. Among them, characterization of pathways regulating the keratinocyte (KC) precursor immaturity versus differentiation balance is required for improving the efficiency of KC precursor ex vivo expansion. In this study, we show that the transcription factor MXD4/MAD4 is expressed at a higher level in quiescent KC stem/progenitor cells located in the basal layer of human epidermis than in cycling progenitors. In holoclone KCs, stable short hairpin-RNA‒mediated decreased expression of MXD4/MAD4 increases MYC expression, whose modulation increases the proliferation of KC precursors and maintenance of their clonogenic potential and preserves the functionality of these precursors in three-dimensional epidermis organoid generation. Altogether, these results characterize MXD4/MAD4 as a major piece of the stemness puzzle in the human epidermis KC lineage and pinpoint an original avenue for ex vivo expansion of human KC precursors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células Epidérmicas , Queratinocitos , Humanos , Diferenciación Celular , Epidermis/metabolismo , Queratinocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
15.
Blood ; 115(8): 1549-53, 2010 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-20032501

RESUMEN

Clinical-grade human mesenchymal stromal cells (MSCs) have been expanded in vitro for tissue engineering or immunoregulatory purposes without standardized culture conditions or release criteria. Although human MSCs show poor susceptibility for oncogenic transformation, 2 recent studies described their capacity to accumulate chromosomal instability and to give rise to carcinoma in immunocompromised mice after long-term culture. We thus investigated the immunologic and genetic features of MSCs expanded with fetal calf serum and fibroblast growth factor or with platelet lysate in 4 cell-therapy facilities during 2 multicenter clinical trials. Cultured MSCs showed a moderate expression of human leukocyte antigen-DR without alteration of their low immunogenicity or their immunomodulatory capacity. Moreover, some transient and donor-dependent recurring aneuploidy was detected in vitro, independently of the culture process. However, MSCs with or without chromosomal alterations showed progressive growth arrest and entered senescence without evidence of transformation either in vitro or in vivo.


Asunto(s)
Aneuploidia , Separación Celular/métodos , Transformación Celular Neoplásica , Células del Estroma/citología , Técnicas de Cultivo de Célula , Regulación de la Expresión Génica , Antígenos HLA-DR/biosíntesis , Humanos , Células del Estroma/metabolismo
16.
Bioact Mater ; 18: 368-382, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35415309

RESUMEN

To control capillary bleeding, surgeons may use absorbable hemostatic agents, such as Surgicel® and TachoSil®. Due to their slow resorption, their persistence in situ can have a negative impact on tissue repair in the resected organ. To avoid complications and obtain a hemostatic agent that promotes tissue repair, a zinc-supplemented calcium alginate compress was developed: HEMO-IONIC®. This compress is non-absorbable and is therefore removed once hemostasis has been achieved. After demonstrating the hemostatic efficacy and stability of the blood clot obtained with HEMO-IONIC, the impact of Surgicel, TachoSil, and HEMO-IONIC on cell activation and tissue repair were compared (i) in vitro on endothelial cells, which are essential to tissue repair, and (ii) in vivo in a mouse skin excision model. In vitro, only HEMO-IONIC maintained the phenotypic and functional properties of endothelial cells and induced their migration. In comparison, Surgicel was found to be highly cytotoxic, and TachoSil inhibited endothelial cell migration. In vivo, only HEMO-IONIC increased angiogenesis, the recruitment of cells essential to tissue repair (macrophages, fibroblasts, and epithelial cells), and accelerated maturation of the extracellular matrix. These results demonstrate that a zinc-supplemented calcium alginate, HEMO-IONIC, applied for 10 min at the end of surgery and then removed has a long-term positive effect on all phases of tissue repair.

17.
mSphere ; : e0021721, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34133202

RESUMEN

Macrophages are important immune cells that are involved in the elimination of microbial pathogens. Following host invasion, macrophages are recruited to the site of infection, where they launch antimicrobial defense mechanisms. Effective microbial clearance by macrophages depends on phagocytosis and phagolysosomal killing mediated by oxidative burst, acidification, and degradative enzymes. However, some pathogenic microorganisms, including some drug-resistant bacteria, have evolved sophisticated mechanisms to prevent phagocytosis or escape intracellular degradation. Cold atmospheric plasma (CAP) is an emerging technology with promising bactericidal effects. Here, we investigated the effect of CAP on Staphylococcus aureus phagocytosis by RAW 264.7 macrophage-like cells. We demonstrate that CAP treatment increases intracellular concentrations of reactive oxygen species (ROS) and nitric oxide and promotes the elimination of both antibiotic-sensitive and antibiotic-resistant S. aureus by RAW 264.7 cells. This effect was inhibited by antioxidants indicating that the bactericidal effect of CAP was mediated by oxidative killing of intracellular bacteria. Furthermore, we show that CAP promotes the association of S. aureus to lysosomal-associated membrane protein 1 (LAMP-1)-positive phagosomes, in which bacteria are exposed to low pH and cathepsin D hydrolase. Taken together, our results provide the first evidence that CAP activates defense mechanisms of macrophages, ultimately leading to bacterial elimination. IMPORTANCE Staphylococcus aureus is the most frequent cause of skin and soft tissue infections. Treatment failures are increasingly common due to antibiotic resistance and the emergence of resistant strains. Macrophages participate in the first line of immune defense and are critical for coordinated defense against pathogenic bacteria. However, S. aureus has evolved sophisticated mechanisms to escape macrophage killing. In the quest to identify novel antimicrobial therapeutic approaches, we investigated the activity of cold atmospheric plasma (CAP) on macrophages infected with S. aureus. Here, we show that CAP treatment promotes macrophage ability to eliminate internalized bacteria. Importantly, CAP could trigger killing of both antibiotic-sensitive and antibiotic-resistant strains of S. aureus. While CAP did not affect the internalization capacity of macrophages, it increased oxidative-dependent bactericidal activity and promoted the formation of degradative phagosomes. Our study shows that CAP has beneficial effects on macrophage defense mechanisms and may potentially be useful in adjuvant antimicrobial therapies.

18.
Vet Med Int ; 2021: 5024905, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950446

RESUMEN

OBJECTIVE: To assess the clinical value and safety of the application of allogeneic equine oral mucosa mesenchymal stromal cells (OM-MSCs) to wounds. Animals. 8 healthy adult horses without front limb skin lesions or musculoskeletal disease. Procedures. Stem cells were isolated from the oral mucosa of a donor horse. Horses were subjected to the creation of eight full-thickness cutaneous wounds, two on each distal forelimb (FL) and two on both sides of the thorax (TH). Each wound was subjected to one out of four treatments: no medication (T1), hyaluronic acid- (HA-) gel containing OM-MSC (T2), HA-gel containing OM-MSC secretome (T3), and HA-gel alone (T4). Gross macroscopic evaluation and laser digital photographic documentation were regularly performed to allow wound assessment including wound surface area. Full-thickness skin punch biopsy was performed at each site before wound induction (D0, normal skin) and after complete wound healing (D62, repaired skin). RESULTS: All wounds healed without adverse effect at D62. Distal limb wounds are slower to heal than body wounds. OM-MSC and its secretome have a positive impact on TH wound contraction. OM-MSC has a positive impact on the contraction and epithelialization of FL wounds. No significant difference between wound sites before and after treatment was noted at histological examination. Conclusion and Clinical Relevance. Using horse cells harvested from oral mucosa is a feasible technique to produce OM-MSC or its secretome. The gel produced by the combination of these biologic components with HA shows a positive impact when applied during the early stage of wound healing.

19.
Front Cell Dev Biol ; 9: 611842, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748104

RESUMEN

Hematopoiesis and bone interact in various developmental and pathological processes. Neurogenic heterotopic ossifications (NHO) are the formation of ectopic hematopoietic bones in peri-articular muscles that develop following severe lesions of the central nervous system such as traumatic cerebral or spinal injuries or strokes. This review will focus on the hematopoietic facet of NHO. The characterization of NHO demonstrates the presence of hematopoietic marrow in which quiescent hematopoietic stem cells (HSC) are maintained by a functional stromal microenvironment, thus documenting that NHOs are neo-formed ectopic HSC niches. Similarly to adult bone marrow, the NHO permissive environment supports HSC maintenance, proliferation and differentiation through bidirectional signaling with mesenchymal stromal cells and endothelial cells, involving cell adhesion molecules, membrane-bound growth factors, hormones, and secreted matrix proteins. The participation of the nervous system, macrophages and inflammatory cytokines including oncostatin M and transforming growth factor (TGF)-ß in this process, reveals how neural circuitry fine-tunes the inflammatory response to generate hematopoietic bones in injured muscles. The localization of NHOs in the peri-articular muscle environment also suggests a role of muscle mesenchymal cells and bone metabolism in development of hematopoiesis in adults. Little is known about the establishment of bone marrow niches and the regulation of HSC cycling during fetal development. Similarities between NHO and development of fetal bones make NHOs an interesting model to study the establishment of bone marrow hematopoiesis during development. Conversely, identification of stage-specific factors that specify HSC developmental state during fetal bone development will give more mechanistic insights into NHO.

20.
Radiat Res ; 196(6): 668-679, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34554263

RESUMEN

Treatment of accidental radiation-induced myelosuppression is primarily based on supportive care and requires specific treatment based on hematopoietic growth factors injection or hematopoietic cell transplantation for the most severe cases. The cytokines used consisted of pegylated erythropoietin (darbepoetin alfa) 500 IU once per week, pegylated G-CSF (pegfilgrastim) 6 mg × 2 once, stem cell factor 20 µg.kg-1 for five days, and romiplostim (TPO analog) 10 µg.kg -1 once per week, with different combinations depending on the accidents. As the stem cell factor did not have regulatory approval for clinical use in France, the French regulatory authorities (ANSM, formerly, AFSSAPS) approved their compassionate use as an investigational drug "on a case-by-case basis". According to the evolution and clinical characteristics, each patient's treatment was adopted on an individual basis. Daily blood count allows initiating G-CSF and SCF delivery when granulocyte <1,000/mm3, TPO delivery when platelets <50,000/mm3, and EPO when Hb<80 g/L. The length of each treatment was based on blood cell recovery criteria. The concept of "stimulation strategy" is linked to each patient's residual hematopoiesis, which varies among them, depending on the radiation exposure's characteristics and heterogeneity. This paper reports the medical management of 8 overexposed patients to ionizing radiation. The recovery of bone marrow function after myelosuppression was accelerated using growth factors, optimized by multiple-line combinations. Particularly in the event of prolonged exposure to ionizing radiation in dose ranges inducing severe myelosuppression (in the order of 5 to 8 Gy), with no indication of hematopoietic stem cell transplantation.


Asunto(s)
Médula Ósea/efectos de la radiación , Citocinas/uso terapéutico , Liberación de Radiactividad Peligrosa , Médula Ósea/metabolismo , Citocinas/administración & dosificación , Humanos , Irradiación Corporal Total
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA