Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Biotechnol ; 23(1): 5, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864427

RESUMEN

BACKGROUND: In industrial microbial biotechnology, fed-batch processes are frequently used to avoid undesirable biological phenomena, such as substrate inhibition or overflow metabolism. For targeted process development, fed-batch options for small scale and high throughput are needed. One commercially available fed-batch fermentation system is the FeedPlate®, a microtiter plate (MTP) with a polymer-based controlled release system. Despite standardisation and easy incorporation into existing MTP handling systems, FeedPlates® cannot be used with online monitoring systems that measure optically through the transparent bottom of the plate. One such system that is broadly used in biotechnological laboratories, is the commercial BioLector. To allow for BioLector measurements, while applying the polymer-based feeding technology, positioning of polymer rings instead of polymer disks at the bottom of the well has been proposed. This strategy has a drawback: measurement requires an adjustment of the software settings of the BioLector device. This adjustment modifies the measuring position relative to the wells, so that the light path is no longer blocked by the polymer ring, but, traverses through the inner hole of the ring. This study aimed at overcoming that obstacle and allowing for measurement of fed-batch cultivations using a commercial BioLector without adjustment of the relative measurement position within each well. RESULTS: Different polymer ring heights, colours and positions in the wells were investigated for their influence on maximum oxygen transfer capacity, mixing time and scattered light measurement. Several configurations of black polymer rings were identified that allow measurement in an unmodified, commercial BioLector, comparable to wells without rings. Fed-batch experiments with black polymer rings with two model organisms, E. coli and H. polymorpha, were conducted. The identified ring configurations allowed for successful cultivations, measuring the oxygen transfer rate and dissolved oxygen tension, pH, scattered light and fluorescence. Using the obtained online data, glucose release rates of 0.36 to 0.44 mg/h could be determined. They are comparable to formerly published data of the polymer matrix. CONCLUSION: The final ring configurations allow for measurements of microbial fed-batch cultivations using a commercial BioLector without requiring adjustments of the instrumental measurement setup. Different ring configurations achieve similar glucose release rates. Measurements from above and below the plate are possible and comparable to measurements of wells without polymer rings. This technology enables the generation of a comprehensive process understanding and target-oriented process development for industrial fed-batch processes.


Asunto(s)
Elastómeros , Escherichia coli , Polímeros , Biotecnología , Glucosa
2.
Biotechnol Bioeng ; 119(3): 881-894, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34951007

RESUMEN

Mini-bioreactors with integrated online monitoring capabilities are well established in the early stages of process development. Mini-bioreactors fulfil the demand for high-throughput-applications and a simultaneous reduction of material costs and total experimental time. One of the most essential online monitored parameters is the oxygen transfer rate (OTR). OTR-monitoring allows fast characterization of bioprocesses and process transfer to larger scales. Currently, OTR-monitoring on a small-scale is limited to shake flasks and 48-well microtiter plates (MTP). Especially, 96-deepwell MTP are used for high-throughput-experiments during early-stage bioprocess development. However, a device for OTR monitoring in 96-deepwell MTP is still not available. To determine OTR values, the measurement of the gas composition in each well of a MTP is necessary. Therefore, a new micro(µ)-scale Transfer rate Online Measurement device (µTOM) was developed. The µTOM includes 96 parallel oxygen-sensitive sensors and a single robust sealing mechanism. Different organisms (Escherichia coli, Hansenula polymorpha, and Ustilago maydis) were cultivated in the µTOM. The measurement precision for 96 parallel cultivations was 0.21 mmol·L-1 ·h-1 (pooled standard deviation). In total, a more than 15-fold increase in throughput and an up to a 50-fold decrease in media consumption, compared with the shake flask RAMOS-technology, was achieved using the µTOM for OTR-monitoring.


Asunto(s)
Reactores Biológicos , Oxígeno , Medios de Cultivo , Escherichia coli , Respiración
3.
J Biol Eng ; 14: 24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32874201

RESUMEN

BACKGROUND: Small-scale cultivation vessels, which allow fed-batch operation mode, become more and more important for fast and reliable early process development. Recently, the polymer-based feeding system was introduced to allow fed-batch conditions in microtiter plates. Maximum glucose release rates of 0.35 mg/h per well (48-well-plate) at 37 °C can be achieved with these plates, depending on the media properties. The fed-batch cultivation of fluorescent protein-expressing E. coli at oxygen transfer rate levels of 5 mmol/L/h proved to be superior compared to simple batch cultivations. However, literature suggests that higher glucose release rates than achieved with the currently available fed-batch microtiter plate are beneficial, especially for fast-growing microorganisms. During the fed-batch phase of the cultivation, a resulting oxygen transfer rate level of 28 mmol/L/h should be achieved. RESULTS: Customization of the polymer matrix enabled a considerable increase in the glucose release rate of more than 250% to up to 0.90 mg/h per well. Therefore, the molecular weight of the prepolymer and the addition of a hydrophilic PDMS-PEG copolymer allowed for the individual adjustment of a targeted glucose release rate. The newly developed polymer matrix was additionally invariant to medium properties like the osmotic concentration or the pH-value. The glucose release rate of the optimized matrix was constant in various synthetic and complex media. Fed-batch cultivations of E. coli in microtiter plates with the optimized matrix revealed elevated oxygen transfer rates during the fed-batch phase of approximately 28 mmol/L/h. However, these increased glucose release rates resulted in a prolonged initial batch phase and oxygen limitations. The newly developed polymer-based feeding system provides options to manufacture individual feed rates in a range from 0.24-0.90 mg/h per well. CONCLUSIONS: The optimized polymer-based fed-batch microtiter plate allows higher reproducibility of fed-batch experiments since cultivation media properties have almost no influence on the release rate. The adjustment of individual feeding rates in a wide range supports the early process development for slow, average and fast-growing microorganisms in microtiter plates. The study underlines the importance of a detailed understanding of the metabolic behavior (through online monitoring techniques) to identify optimal feed rates.

4.
Biotechnol J ; 11(4): 519-29, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26709721

RESUMEN

Microtiter plates (MTP) and automatized techniques are increasingly applied in the field of biotechnology. However, the susceptibility of MTPs to edge effects such as thermal gradients can lead to high variation of measured enzyme activities. In an effort to enhance experimental reliability, to quantify, and to minimize instrument-caused deviations in enzyme kinetics between two MTP-readers, we comprehensively quantified temperature distribution in 96-well MTPs. We demonstrated the robust application of the absorbance dye cresol red as easily applicable temperature indicator in cuvettes and MTPs and determined its accuracy to ±0.16°C. We then quantified temperature distributions in 96-well MTPs revealing temperature deviations over single MTP of up to 2.2°C and different patterns in two commercial devices (BioTek Synergy 4 and Synergy Mx). The obtained liquid temperature was shown to be substantially controlled by evaporation. The temperature-induced enzyme activity variation within MTPs amounted to about 20 %. Activity deviations between MTPs and to those in cuvettes were determined to 40 % due to deviations from the set temperature in MTPs. In conclusion, we propose a better control of experimental conditions in MTPs or alternative experimental systems for reliable determination of kinetic parameters for bioprocess development.


Asunto(s)
Enzimas/metabolismo , Fenolsulfonftaleína/análogos & derivados , Reactores Biológicos/microbiología , Activación Enzimática , Microbiología Industrial/métodos , Fenolsulfonftaleína/química , Temperatura
5.
Curr Opin Biotechnol ; 35: 1-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25544012

RESUMEN

Small-scale bioreactors in the microliter and milliliter range gained more importance in recent years. For the characterization of mass transfer, the volumetric mass transfer coefficient kLa and the oxygen transfer rate OTRmax are considered. kLa values up to 1440 hour(-1) are reported for small-scale bioreactors. The OTRmax is strongly influenced by the liquid film thickness and, finally, by the liquid viscosity. Optical on-line methods, such as fluorescence and scattered light measurements, are applied to monitor pH, dissolved oxygen tension (DOT), product formation and biomass. Recently, single cell microfluidics are used to obtain new insights into microbial behavior at changing operating conditions. Finally, novel fed-batch techniques are applied to assimilate the cultivation conditions between screening and production scale.


Asunto(s)
Fermentación , Animales , Biomasa , Reactores Biológicos , Microfluídica , Oxígeno
6.
J Biol Eng ; 8: 18, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25093039

RESUMEN

BACKGROUND: Biotechnological screening processes are performed since more than 8 decades in small scale shaken bioreactors like shake flasks or microtiter plates. One of the major issues of such reactors is the sufficient oxygen supply of suspended microorganisms. Oxygen transfer into the bulk liquid can in general be increased by introducing suitable baffles at the reactor wall. However, a comprehensive and systematic characterization of baffled shaken bioreactors has never been carried out so far. Baffles often differ in number, size and shape. The exact geometry of baffles in glass lab ware like shake flasks is very difficult to reproduce from piece to piece due to the hard to control flow behavior of molten glass during manufacturing. Thus, reproducibility of the maximum oxygen transfer capacity in such baffled shake flasks is hardly given. RESULTS: As a first step to systematically elucidate the general effect of different baffle geometries on shaken bioreactor performance, the maximum oxygen transfer capacity (OTRmax) in baffled 48-well microtiter plates as shaken model reactor was characterized. This type of bioreactor made of plastic material was chosen, as the exact geometry of the baffles can be fabricated by highly reproducible laser cutting. As a result, thirty different geometries were investigated regarding their maximum oxygen transfer capacity (OTRmax) and liquid distribution during shaking. The relative perimeter of the cross-section area as new fundamental geometric key parameter is introduced. An empirical correlation for the OTRmax as function of the relative perimeter, shaking frequency and filling volume is derived. For the first time, this correlation allows a systematic description of the maximum oxygen transfer capacity in baffled microtiter plates. CONCLUSIONS: Calculated and experimentally determined OTRmax values agree within ± 30% accuracy. Furthermore, undesired out-of-phase operating conditions can be identified by using the relative perimeter as key parameter. Finally, an optimum well geometry characterized by an increased perimeter of 10% compared to the unbaffled round geometry is identified. This study may also assist to comprehensively describe and optimize the baffles of shake flasks in future.

7.
J Biol Eng ; 8: 22, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25126113

RESUMEN

BACKGROUND: Bioprocesses depend on a number of different operating parameters and temperature is one of the most important ones. Unfortunately, systems for rapid determination of temperature dependent reaction kinetics are rare. Obviously, there is a need for a high-throughput screening procedure of temperature dependent process behavior. Even though, well equipped micro-bioreactors are a promising approach sufficient temperature control is quite challenging and rather complex. RESULTS: In this work a unique system is presented combining an optical on-line monitoring device with a customized temperature control unit for 96 well microtiter plates. By exposing microtiter plates to specific temperature profiles, high-throughput temperature optimization for microbial and enzymatic systems in a micro-scale of 200 µL is realized. For single well resolved temperature measurement fluorescence thermometry was used, combining the fluorescent dyes Rhodamin B and Rhodamin 110. The real time monitoring of the microbial and enzymatic reactions provides extensive data output. To evaluate this novel system the temperature optima for Escherichia coli and Kluyveromyces lactis regarding growth and recombinant protein production were determined. Furthermore, the commercial cellulase mixture Celluclast as a representative for enzymes was investigated applying a fluorescent activity assay. CONCLUSION: Microtiter plate-based high-throughput temperature profiling is a convenient tool for characterizing temperature dependent reaction processes. It allows the evaluation of numerous conditions, e.g. microorganisms, enzymes, media, and others, in a short time. The simple temperature control combined with a commercial on-line monitoring device makes it a user friendly system.

8.
Biotechnol Prog ; 30(6): 1441-56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25138595

RESUMEN

Disposable orbitally shaken bioreactors are a promising alternative to stirred or wave agitated systems for mammalian and plant cell cultivation, because they provide a homogeneous and well-defined liquid distribution together with a simple and cost-efficient design. Cultivation conditions in the surface-aerated bioreactors are mainly affected by the size of the volumetric oxygen transfer area (a) and the volumetric power input (P∕VL ) that both result from the liquid distribution during shaking. Since Computational Fluid Dynamics (CFD)-commonly applied to simulate the liquid distribution in such bioreactors-needs high computing power, this technique is poorly suited to investigate the influence of many different operating conditions in various scales. Thus, the aim of this paper is to introduce a new mathematical model for calculating the values of a and P∕VL for liquids with water-like viscosities. The model equations were derived from the balance of centrifugal and gravitational forces exerted during shaking. A good agreement was found among calculated values for a and P∕VL , CFD simulation values and empirical results. The newly proposed model enables a time efficient way to calculate the oxygen transfer areas and power input for various shaking frequencies, filling volumes and shaking and reactor diameters. All these parameters can be calculated fast and with little computing power.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Modelos Teóricos , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Células Cultivadas , Oxígeno/análisis , Reología
9.
J Biol Eng ; 7(1): 28, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24289110

RESUMEN

BACKGROUND: Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. RESULTS: A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. CONCLUSION: The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA