Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Hyperthermia ; 41(1): 2320852, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465653

RESUMEN

INTRODUCTION: Hyperthermia (HT) induces various cellular biological processes, such as repair impairment and direct HT cell killing. In this context, in-silico biophysical models that translate deviations in the treatment conditions into clinical outcome variations may be used to study the extent of such processes and their influence on combined hyperthermia plus radiotherapy (HT + RT) treatments under varying conditions. METHODS: An extended linear-quadratic model calibrated for SiHa and HeLa cell lines (cervical cancer) was used to theoretically study the impact of varying HT treatment conditions on radiosensitization and direct HT cell killing effect. Simulated patients were generated to compute the Tumor Control Probability (TCP) under different HT conditions (number of HT sessions, temperature and time interval), which were randomly selected within margins based on reported patient data. RESULTS: Under the studied conditions, model-based simulations suggested a treatment improvement with a total CEM43 thermal dose of approximately 10 min. Additionally, for a given thermal dose, TCP increased with the number of HT sessions. Furthermore, in the simulations, we showed that the TCP dependence on the temperature/time interval is more correlated with the mean value than with the minimum/maximum value and that comparing the treatment outcome with the mean temperature can be an excellent strategy for studying the time interval effect. CONCLUSION: The use of thermoradiobiological models allows us to theoretically study the impact of varying thermal conditions on HT + RT treatment outcomes. This approach can be used to optimize HT treatments, design clinical trials, and interpret patient data.


Asunto(s)
Hipertermia Inducida , Neoplasias del Cuello Uterino , Femenino , Humanos , Terapia Combinada , Células HeLa , Probabilidad , Temperatura , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/radioterapia , Neoplasias del Cuello Uterino/terapia
2.
J Chem Inf Model ; 63(23): 7453-7463, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38033045

RESUMEN

Seeded emulsion polymerization is one of the best-known methods for preparing polymer particles with a controlled size, composition, and shape. It first requires the preparation of seed particles, which are then swollen with additional monomer (the same as the one used for the seed or a different one), to either increase the seed's size or change its morphology. The use of surfactants plays a central role in guaranteeing the required colloidal stability and contributing to the final shape and structure of the particles by lowering the interfacial energy between the polymer of the seed and the added monomer. We here study the polymerization of methyl methacrylate in the presence of polystyrene seed particles at various surfactant concentrations in the presence and absence of a surfactant (sodium dodecyl sulfate). We first show experimentally that the morphology of the colloidal particles can be tuned from Janus to core-shell, depending on the presence or absence of surfactant on the seeds particles' surface. Furthermore, using classical molecular dynamics simulations, we investigate the mechanism and behavior of the surfactants during the first stages of the polymerization process. We use a newly developed approach based on contact statistical analysis to confirm the critical role played by the organization of surfactant molecules on the surface of the seed particles in dictating the final particle morphology.


Asunto(s)
Simulación de Dinámica Molecular , Polímeros , Polímeros/química , Emulsiones/química , Tensoactivos/química , Dodecil Sulfato de Sodio
3.
Macromol Rapid Commun ; 44(22): e2300415, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722703

RESUMEN

Post-synthesis modifications are valuable tools to alter functionalities and induce morphology changes in colloidal particles. Non-spherical polymer particles with Janus characteristics are prepared by combining seeded growth polymerization and selective dissolution. First, spherical polystyrene (PS) particles have been swollen with methyl methacrylate (MMA) with an activated swelling method. This is followed by polymerization that led to particles with two well-separated faces: one made of PS and the second of polymethyl methacrylate (PMMA). Subsequently, non-spherical particles are obtained by exposing the Janus colloids to various solvents. Using the two polymers' orthogonal solubility, solvents are identified to selectively dissolve only one face, leading to hemispherical PS or PMMA particles. It is further investigated how changing the composition of the PMMA face - by either co-polymerization with glycidyl methacrylate or by adding a cross-linker - affects the particles' morphology. The poly-methacrylate face can gain total or partial resistance towards the solvents, resulting in intriguing shapes, such as mushroom-like and Janus dimpled particles. The dissolution mechanisms are investigated via optical microscopy, where total or partial dissolutions can be directly observed. Lastly, prematurely quenching the dissolution of the particle's lobes with water can be used to control the Janus mushroom-like particle aspect ratio.


Asunto(s)
Nanopartículas Multifuncionales , Polimetil Metacrilato , Polímeros , Solventes , Metacrilatos
4.
Soft Matter ; 18(8): 1715-1730, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35147636

RESUMEN

The aggregation kinetics of sedimenting colloidal particles under fully destabilized conditions has been investigated over a wide range of particle volume fractions (Φ) and Péclet numbers (Pe) using the recent PSE algorithm implementing the Rotne-Prager-Yamakawa (RPY) approximation for long-range Hydrodynamic Interactions (HI). Fast Lubrication Dynamics (FLD) and simple Brownian Dynamics (BD) methods have also been employed to assess the importance of long range hydrodynamic interactions on the resulting dynamics. It has been observed that long-range hydrodynamic interactions are essential to capture the fast aggregation rates induced by the increase in sedimentation rate of clusters with increasing mass, which manifests with an explosive-like cluster growth after a given induction time. On the contrary, simulations employing only short-range hydrodynamic interactions (such as FLD) and BD (which neglects completely hydrodynamic interactions) are incapable of predicting this very rapid kinetics, because sedimentation simply leads to all particles and clusters moving vertically with identical velocity. It has been observed that at high volume fractions and low Pe values, a gel point can be formed and a phase diagram predicting when gelation is reached has been obtained. It was also observed that, as Pe increases, the anisotropy of the resulting clusters decreases, suggesting that denser clusters with spherical-like morphology are formed due to cluster breakage and restructuring. We can conclude that long-range hydrodynamic effects are of crucial importance in understanding the aggregation dynamics of settling clusters, revealing important features of the complex interplay between sedimentation, and colloidal interactions.

5.
Chimia (Aarau) ; 76(10): 841-845, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-38069696

RESUMEN

When thinking about colloidal particles, the fist image that comes into mind is that of tiny little polystyrene spheres with a narrow size distribution. While spherical polymer colloids are one of the workhorses of colloid science, scientists have been working on the development of progressively advanced strategies to move beyond particles with spherical shapes, and prepared polymer colloids with more complex morphologies. This short review aims at providing a summary of these developments, focusing primarily on methods applicable to submicron particles, with an eye towards their applications and some discussion about advantages and drawbacks of the various approaches.

6.
Angew Chem Int Ed Engl ; 60(2): 904-909, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-32961006

RESUMEN

Some marine plankton called dinoflagellates emit light in response to the movement of surrounding water, resulting in a phenomenon called milky seas or sea sparkle. The underlying concept, a shear-stress induced permeabilisation of biocatalytic reaction compartments, is transferred to polymer-based nanoreactors. Amphiphilic block copolymers that carry nucleobases in their hydrophobic block are self-assembled into polymersomes. The membrane of the vesicles can be transiently switched between an impermeable and a semipermeable state by shear forces occurring in flow or during turbulent mixing of polymersome dispersions. Nucleobase pairs in the hydrophobic leaflet separate when mechanical force is applied, exposing their hydrogen bonding motifs and therefore making the membrane less hydrophobic and more permeable for water soluble compounds. This polarity switch is used to release payload of the polymersomes on demand, and to activate biocatalytic reactions in the interior of the polymersomes.


Asunto(s)
Dinoflagelados/metabolismo , Polímeros/química , Biocatálisis , Dinoflagelados/enzimología , Fluoresceína/química , Fluoresceína/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Resistencia al Corte , Espectrofotometría Ultravioleta , Temperatura
7.
Angew Chem Int Ed Engl ; 59(32): 13597-13601, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32339396

RESUMEN

Using a one-step synthetic route for block copolymers avoids the repeated addition of monomers to the polymerization mixture, which can easily lead to contamination and, therefore, to the unwanted termination of chain growth. For this purpose, monomers (M1-M5) with different steric hindrances and different propagation rates are explored. Copolymerization of M1 (propagating rapidly) with M2 (propagating slowly), M1 with M3 (propagating extremely slowly) and M4 (propagating rapidly) with M5 (propagating slowly) yielded diblock-like copolymers using Grubbs' first (G1) or third generation catalyst (G3). The monomer consumption was followed by 1 H NMR spectroscopy, which revealed vastly different reactivity ratios for M1 and M2. In the case of M1 and M3, we observed the highest difference in reactivity ratios (r1 =324 and r2 =0.003) ever reported for a copolymerization method. A triblock-like copolymer was also synthesized using G3 by first allowing the consumption of the mixture of M1 and M2 and then adding M1 again. In addition, in order to measure the fast reaction rates of the G3 catalyst with M1, we report a novel retardation technique based on an unusual reversible G3 Fischer-carbene to G3 benzylidene/alkylidene transformation.

8.
Chimia (Aarau) ; 73(1): 39-42, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30813995

RESUMEN

Magnetic nanoparticles have been the subject of enormous investigations for their potential use as cancer treatment via hyperthermia. This is due to their ability to generate heat when exposed to an external magnetic field oscillating at sufficiently high frequency. There are many different parameters that need to be considered when designing the optimal nanoparticle formulation for hyperthermia. The effect of the formation of clusters of nanoparticles, which is either an unwanted side effect of poor colloidal stability of the particles, or a desired for- mulation strategy, has poorly understood consequences on the amount of heat generated by the nanoparticles. The objective of this work is to address this problem from the theoretical side by performing detailed simulations to investigate the effect of incorporation of magnetic nanoparticles in clusters on the amount of heat generated as a function of the particle size, cluster size and particles magnetic properties.

9.
Chimia (Aarau) ; 73(1): 7-11, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30813988

RESUMEN

While coupling mechanical and chemical processes is widespread in living organisms, the idea to harness the mechanically induced dissociation of weak covalent and non-covalent bonds to create artificial materials that respond to mechanical stimulation has only recently gained attention. Here we summarize our activities that mainly revolve around the exploitation of non-covalent interactions in (supramolecular) polymeric materials with the goal to translate mechanical stresses into useful, pre-defined events. Focusing on mechano- chromic polymers that alter their optical absorption or fluorescence properties, several new operating principles, mechanosensitive entities, and materials systems were developed. Such materials are expected to be useful for technical applications that range from the detection of very small forces in biological systems to the monitoring of degradation processes and damage in coatings and structural objects.

10.
Small ; 14(46): e1802854, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30350472

RESUMEN

In this work, amyloid fibrils are used as a template for the preparation of long silica fibers, with a variety of aspect ratios and surface roughness. Starting with ß-lactoglobulin fibrils with typical diameters of about 20 nm and a length of several micrometers, two different strategies are followed to grow silica: either in water at acidic pH values, or in ethanol-water mixtures under Stöber conditions and an excellent control of both the thickness and the roughness of the silica layer has been achieved. Silica nanofibers with a thickness ranging from a few nanometers to hundreds of nanometers are prepared. As an application, the rough silica nanotubes are used to create superhydrophobic surfaces by mimicking the structure of the lotus leaf. The papillary structure of the lotus leaf is replicated by depositing 10 µm colloidal particles in either a single colloidal crystal, or in a binary colloidal crystal made with smaller sub-micrometer particles. Then, silica nanofibers are deposited on the binary colloidal crystal surfaces through a layer-by-layer deposition procedure to replicate the nanoscale roughness provided by wax nanotubes. Upon hydrophobization of the silica nanotubes, the final surfaces are highly superhydrophobic, with a water contact angle of 165.5°.


Asunto(s)
Amiloide/química , Nanofibras/química , Coloides/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanotubos/química , Dióxido de Silicio/química , Propiedades de Superficie
11.
J Acoust Soc Am ; 143(2): 1049, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29495717

RESUMEN

A combination of two models previously developed by Faran, and Atkinson and Kytömaa (Faran-AK model) was used to calculate the ultrasonic attenuation and the backscattering signal of a suspension of particles. The model of Atkinson and Kytömaa yielded the viscoelastic contributions while the model of Faran yielded the scattering contribution. A comparison with the more fundamental model by Epstein, Carhart, Allegra, and Hawley validated the combination, where the combination used here proved to be computationally less intensive and more stable. The Faran-AK model outputs were also compared with ultrasound measurements of glass beads with two different particle size distributions and varying concentrations. The comparison showed a very reasonable agreement of model and experiment.

12.
Angew Chem Int Ed Engl ; 57(35): 11445-11450, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29897637

RESUMEN

The introduction of mechanophores into polymers makes it possible to transduce mechanical forces into chemical reactions that can be used to impart functions such as self-healing, catalytic activity, and mechanochromic response. Here, an example of mechanically induced metal ion release from a polymer is reported. Ferrocene (Fc) was incorporated as an iron ion releasing mechanophore into poly(methyl acrylate)s (PMAs) and polyurethanes (PUs). Sonication triggered the preferential cleavage of the polymers at the Fc units over other bonds, as shown by a kinetic study of the molar mass distribution of the cleaved Fc-containing and Fc-free reference polymers. The released and oxidized iron ions can be detected with KSCN to generate the red-colored [Fe(SCN)n (H2 O)6-n )](3-n)+ complex or reacted with K4 [Fe(CN)6 ] to afford Prussian blue.

13.
Langmuir ; 33(49): 14038-14044, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29151350

RESUMEN

Surface chemistry is believed to be the key parameter affecting the aggregation and breakage of colloidal suspensions when subjected to shear. To date, only a few works dealt with the understanding of the role of the physical and chemical properties of the particles' surface upon aggregation under shear. Previous studies suggested that surface modifications strongly affect polymer particles' adhesion, but it was very challenging to demonstrate this effect and monitor these alterations upon prolonged exposure to shear forces. More importantly, the mechanisms leading to these changes remain elusive. In this work, shear-induced aggregation experiments of polymer colloidal particles have been devised with the specific objective of highlighting material transfer and clarifying the role of the softness of the particle's surface. To achieve this goal, polymer particles with a core-shell structure comprising fluorescent groups have been prepared so that the surface's softness could be tuned by the addition of monomer acting as a plasticizer and the percentage of fluorescent particles could be recorded over time via confocal microscopy to detect eventual material transfer among different particles. For the first time, material exchange occurring on the soft surface of core-shell polymer microparticles upon aggregation under shear was observed and proved. More aptly, starting from a 50% labeled/nonlabeled mixture, an increase in the percentage of particles showing a fluorescent signature was recorded over time, reaching a fraction of 70% after 5 h.

14.
Soft Matter ; 12(24): 5313-24, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27222249

RESUMEN

Application of shear flow to charge-stabilized aqueous colloidal suspensions is ubiquitous in industrial applications and as a means to achieve controlled field-induced assembly of nanoparticles. Yet, applying shear flow to a charge-stabilized colloidal suspension, which is initially monodisperse and in quasi-equilibrium leads to non-trivial clustering phenomena (and sometimes to a gelation transition), dominated by the complex interplay between DLVO interactions and shear flow. The quantitative understanding of these strongly nonequilibrium phenomena is still far from being complete. By taking advantage of a recent shear-induced aggregation rate theory developed in our group, we present here a systematic numerical study, based on the governing master kinetic equation (population-balance) for the shear-induced clustering and breakup of colloids exposed to shear flow. In the presence of sufficiently stable particles, the clustering kinetics is characterized by an initial very slow growth, controlled by repulsion. During this regime, particles are slowly aggregating to form clusters, the reactivity of which increases along with their size growth. When their size reaches a critical threshold, a very rapid, explosive-like growth follows, where shear forces are able to overcome the energy barrier between particles. This stage terminates when a dynamic balance between shear-induced aggregation and cluster breakage is reached. It is also observed that these systems are characterized by a cluster mass distribution that for a long time presents a well-defined bimodality. The model predictions are quantitatively in excellent agreement with available experimental data, showing how the theoretical picture is able to quantitatively account for the underlying nonequilibrum physics.

15.
Macromol Rapid Commun ; 37(10): 826-32, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27071664

RESUMEN

Low-power light upconversion is a highly desirable feature for a broad range of applications and new materials enabling this process are sought in both bulk and particulate form. Here, the preparation of upconverting nanoparticles is reported from a methacrylic terpolymer bearing diphenylanthracene and meso-phenoxytris(heptyl)porphyrin pendant groups by a microemulsion technique. The use of a terpolymer in which the upconvering dye molecules are covalently attached mitigates some of the drawbacks of triplet-triplet annihilation upconverting nanoparticles made by other techniques, in particular dye leakage from the nanoparticles, and limited control of the sensitizer and emitter concentration within each nanoparticle. Size and morphology of the new upconverting nanoparticles are investigated by dynamic light scattering and transmission electron microscopy and elucidated their upconverting properties by luminescence spectroscopy.


Asunto(s)
Nanopartículas/química , Polímeros/química , Colorantes , Luminiscencia , Dispersión de Radiación
16.
Chem Soc Rev ; 44(17): 6287-305, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26056687

RESUMEN

Nanomaterials are finding increasing use for biomedical applications such as imaging, diagnostics, and drug delivery. While it is well understood that nanoparticle (NP) physico-chemical properties can dictate biological responses and interactions, it has been difficult to outline a unifying framework to directly link NP properties to expected in vitro and in vivo outcomes. When introduced to complex biological media containing electrolytes, proteins, lipids, etc., nanoparticles (NPs) are subjected to a range of forces which determine their behavior in this environment. One aspect of NP behavior in biological systems that is often understated or overlooked is aggregation. NP aggregation will significantly alter in vitro behavior (dosimetry, NP uptake, cytotoxicity), as well as in vivo fate (pharmacokinetics, toxicity, biodistribution). Thus, understanding the factors driving NP colloidal stability and aggregation is paramount. Furthermore, studying biological interactions with NPs at the nanoscale level requires an interdisciplinary effort with a robust understanding of multiple characterization techniques. This review examines the factors that determine NP colloidal stability, the various efforts to stabilize NP in biological media, the methods to characterize NP colloidal stability in situ, and provides a discussion regarding NP interactions with cells.


Asunto(s)
Coloides/química , Medios de Cultivo/química , Nanopartículas/química , Animales , Humanos , Nanopartículas/toxicidad , Proteínas/química
17.
Langmuir ; 31(16): 4635-43, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25843702

RESUMEN

The preparation of anisotropic nanoparticles has drawn much attention in the literature, with most of the efforts being dedicated to convex particles. In this work, instead, we present a reliable method to synthesis silica nanobowls with one well-defined opening, covering a broad range of sizes. The nanobowls have been obtained from asymmetrically functionalized silica-polymer Janus nanodumbbells, used as templates, by removing of the polymer. Polystyrene seeds having different sizes as well as surface chemistry have been used as starting material in a two-step seeded emulsion polymerization, which leads to polymer nanodumbbells. These dumbbells are also asymmetrically functionalized due to the presence of silane groups on only one of their two hemispheres. This allows us to selectively coat the silane-bearing hemisphere of the dumbbells with a silica layer by means of a Stoeber process. The silica nanobowls are eventually obtained after either calcination or dissolution of the polymeric template. Depending on the route followed to remove the polymer, nanobowls made of pure silica (from calcination) or hybrid Janus nanobowls with a silica outer shell and a covalently bound hydrophobic polymer layer inside the cavity (from dissolution) could be prepared. The difference between the two types of nanobowls has been proved by electrostatically binding oppositely charged silica nanoparticles, which adhere selectively only on the outer silica part of the nanobowls prepared by polymer dissolution, while they attach both inside and outside of nanobowls prepared by calcination. We also show that selective functionalization of the outer surface of the Janus nanobowls from dissolution is possible. This work is one of the first examples of concave objects bearing different functionalities in the inner and outer parts of their surface.

18.
Langmuir ; 31(21): 5712-21, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25941836

RESUMEN

In this work we build on our previous paper (Harshe, Y. M.; Lattuada, M. Langmuir 2012, 28, 283-292) and compute the breakage rate of colloidal aggregates under the effect of shear forces by means of Stokesian dynamics simulations. A library of clusters made of identical spherical particles covering a broad range of masses and fractal dimension values (from 1.8 to 3.0) was generated by means of a combination of several Monte Carlo methods. DLVO theory has been used to describe the interparticle interactions, and contact forces have been introduced by means of the discrete element method. The aggregate breakage process was investigated by exposing them to well-defined shear forces, generated under both simple shear and uniaxial extensional flow conditions, and by recording the time required to reach the first breakage event. It has been found that the breakage rate of clusters was controlled by the potential well between particles as described by DLVO theory. A semiempirical Arrhenius-type exponential equation that relates the potential well to the breakage rate has been used to fit the simulation results. The dependence of the breakage process on the radius of gyration, on the external shear strength, and on the fractal dimension has been obtained, providing a very general relationship for the breakage rate of clusters. It was also found that the fragment mass distribution is insensitive to the presence of electrostatic repulsive interactions. We also clarify the physical reason for the large difference in the breakage rate of clusters between simple shear and the uniaxial extensional flow using a criterion based on the energy dissipation rate. Finally, in order to answer the question of the minimum cluster size that can break under simple shear conditions, a critical rotation number has been introduced, expressing the maximum number of rotations that a cluster exposed to simple shear could sustain before breakage.

19.
Soft Matter ; 11(27): 5513-22, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26061258

RESUMEN

Gaining knowledge on the stability and viscosity of concentrated therapeutic protein solutions is of great relevance to the pharmaceutical industry. In this work, we borrow key concepts from colloid science to rationalize the impact of aggregate formation on the changes in viscosity of a concentrated monoclonal antibody solution. In particular, we monitor the kinetics of aggregate growth under thermal stress by static and dynamic light scattering, and we follow the rise in solution viscosity by measuring the diffusion coefficient of tracer nanoparticles with dynamic light scattering. Moreover, we characterize aggregate morphology in the frame of the fractal geometry. We show that the curves of the increase in viscosity with time monitored at three different protein concentrations collapse on one single master curve when the reaction profiles are normalized based on an effective volume fraction occupied by the aggregates, which depends on the aggregate size, concentration and morphology. Importantly, we find that the viscosity of an aggregate sample is lower than the viscosity of a monomeric sample of a similar occupied volume fraction due to the polydispersity of the aggregate distribution.


Asunto(s)
Inmunoglobulina G/química , Cinética , Tamaño de la Partícula , Agregado de Proteínas , Unión Proteica , Soluciones , Solventes/química , Viscosidad
20.
Phys Chem Chem Phys ; 17(37): 24392-402, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26339696

RESUMEN

Gaining fundamental knowledge about diffusion in crowded environments is of great relevance in a variety of research fields, including reaction engineering, biology, pharmacy and colloid science. In this work, we determine the effective viscosity experienced by a spherical tracer particle immersed in a concentrated colloidal dispersion by means of Brownian dynamics simulations. We characterize how the effective viscosity increases from the solvent viscosity for small tracer particles to the macroscopic viscosity of the dispersion when large tracer particles are employed. Our results show that the crossover between these two regimes occurs at a tracer particle size comparable to the host particle size. In addition, it is found that data points obtained in various host dispersions collapse on one master curve when the normalized effective viscosity is plotted as a function of the ratio between the tracer particle size and the mean host particle size. In particular, this master curve was obtained by varying the volume fraction, the average size and the polydispersity of the host particle distribution. Finally, we extend these results to determine the size dependent effective viscosity experienced by a fractal cluster in a concentrated colloidal system undergoing aggregation. We include this scaling of the effective viscosity in classical aggregation kernels, and we quantify its impact on the kinetics of aggregate growth as well as on the shape of the aggregate distribution by means of population balance equation calculations.


Asunto(s)
Coloides/química , Cinética , Simulación de Dinámica Molecular , Tamaño de la Partícula , Propiedades de Superficie , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA