Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 124(4): 406-15, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21747053

RESUMEN

BACKGROUND: Cardiac overload, a major cause of heart failure, induces the expression of the heat shock protein H11 kinase/Hsp22 (Hsp22). METHODS AND RESULTS: To determine the specific function of Hsp22 in that context, a knockout mouse model of Hsp22 deletion was generated. Although comparable to wild-type mice in basal conditions, knockout mice exposed to pressure overload developed less hypertrophy and showed ventricular dilation, impaired contractile function, increased myocyte length and accumulation of interstitial collagen, faster transition into heart failure, and increased mortality. Microarrays revealed that hearts from knockout mice failed to transactivate genes regulated by the transcription factor STAT3. Accordingly, nuclear STAT3 tyrosine phosphorylation was decreased in knockout mice. Silencing and overexpression experiments in isolated neonatal rat cardiomyocytes showed that Hsp22 activates STAT3 via production of interleukin-6 by the transcription factor nuclear factor-κB. In addition to its transcriptional function, STAT3 translocates to the mitochondria where it increases oxidative phosphorylation. Both mitochondrial STAT3 translocation and respiration were also significantly decreased in knockout mice. CONCLUSIONS: This study found that Hsp22 represents a previously undescribed activator of both nuclear and mitochondrial functions of STAT3, and its deletion in the context of pressure overload in vivo accelerates the transition into heart failure and increases mortality.


Asunto(s)
Eliminación de Gen , Proteínas del Choque Térmico HSP20/genética , Insuficiencia Cardíaca/genética , Mitocondrias Cardíacas/genética , Proteínas Musculares/genética , Factor de Transcripción STAT3/genética , Animales , Cardiomegalia/enzimología , Cardiomegalia/genética , Núcleo Celular/enzimología , Núcleo Celular/genética , Células Cultivadas , Colágeno/metabolismo , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/mortalidad , Proteínas de Choque Térmico , Interleucina-6/biosíntesis , Masculino , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , Chaperonas Moleculares , Miocitos Cardíacos/enzimología , FN-kappa B/metabolismo , Fosforilación Oxidativa , Ratas
2.
Free Radic Biol Med ; 137: 194-200, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31047988

RESUMEN

H11 kinase/Hsp22 (Hsp22) is a small heat shock protein, which, when overexpressed cardiac specifically in transgenic (TG) mice, induces stable left ventricular (LV) hypertrophy. Hsp22 also increases oxidative phosphorylation and mitochondrial reactive oxygen species (ROS) production, mechanisms mediating LV hypertrophy, senescence and reduced lifespan. Therefore, we investigated whether ROS production mediates LV hypertrophy, senescence and reduced life span in Hsp22 TG mice. Survival curves revealed that TG mice had a 48% reduction in their mean life span compared to wild type (WT) mice. This was associated with a significant increase in senescence markers, such as p16, p19 mRNA levels as well as the percentage of ß-galactosidase positive cells and telomerase activity. Oxidized (GSSG)/reduced (GSH) glutathione ratio, an indicator of oxidative stress, and ROS production from 3 major cellular sources was measured in cardiac tissue. Hearts from TG mice exhibited a decrease in GSH/GSSG ratio together with increased ROS production from all sources. To study the role of ROS, mice were treated with the antioxidant Tempol from weaning to their sacrifice. Chronic Tempol treatment abolished oxidative stress and overproduction of ROS, and reduced myocardial hypertrophy and Akt phosphorylation in TG mice. Tempol also significantly extended life span and prevented aging markers in TG mice. Taken together these results show that overexpression of Hsp22 increases oxidative stress responsible for the induction of hypertrophy and senescence and ultimately reduction in life span.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Miocardio/patología , Animales , Antioxidantes/administración & dosificación , Células Cultivadas , Senescencia Celular , Óxidos N-Cíclicos/administración & dosificación , Proteínas de Choque Térmico/genética , Hipertrofia Ventricular Izquierda/genética , Longevidad , Masculino , Ratones , Ratones Transgénicos , Chaperonas Moleculares/genética , Miocardio/metabolismo , Estrés Oxidativo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Marcadores de Spin
3.
Free Radic Biol Med ; 52(11-12): 2168-76, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22542467

RESUMEN

H11 kinase/Hsp22 (Hsp22), a small heat shock protein upregulated by ischemia/reperfusion, provides cardioprotection equal to ischemic preconditioning (IPC) through a nitric oxide (NO)-dependent mechanism. A main target of NO-mediated preconditioning is the mitochondria, where NO reduces O2 consumption and reactive oxygen species (ROS) production during ischemia. Therefore, we tested the hypothesis that Hsp22 overexpression modulates mitochondrial function through an NO-sensitive mechanism. In cardiac mitochondria isolated from transgenic (TG) mice with cardiac-specific overexpression of Hsp22, mitochondrial basal, ADP-dependent, and uncoupled O2 consumption was increased in the presence of either glucidic or lipidic substrates. This was associated with a decrease in the maximal capabilities of complexes I and III to generate superoxide anion in combination with an inhibition of superoxide anion production by the reverse electron flow. NO synthase expression and NO production were increased in mitochondria from TG mice. Hsp22-induced increase in O2 consumption was abolished either by pretreatment of TG mice with the NO synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) or in isolated mitochondria by the NO scavenger phenyltetramethylimidazoline-1-oxyl-3-oxide. L-NAME pretreatment also restored the reverse electron flow. After anoxia, mitochondria from TG mice showed a reduction in both oxidative phosphorylation and H2O2 production, an effect partially reversed by L-NAME. Taken together, these results demonstrate that Hsp22 overexpression increases the capacity of mitochondria to produce NO, which stimulates oxidative phosphorylation in normoxia and decreases oxidative phosphorylation and reactive oxygen species production after anoxia. Such characteristics replicate those conferred by IPC, thereby placing Hsp22 as a potential tool for prophylactic protection of mitochondrial function during ischemia.


Asunto(s)
Proteínas del Choque Térmico HSP20/metabolismo , Corazón , Mitocondrias Cardíacas/metabolismo , Proteínas Musculares/metabolismo , Óxido Nítrico/metabolismo , Animales , Células Cultivadas , Proteínas del Choque Térmico HSP20/genética , Corazón/efectos de los fármacos , Corazón/fisiopatología , Proteínas de Choque Térmico , Isquemia/metabolismo , Ratones , Ratones Transgénicos , Chaperonas Moleculares , Proteínas Musculares/genética , NG-Nitroarginina Metil Éster/administración & dosificación , Especificidad de Órganos , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/genética , Especies Reactivas de Oxígeno/metabolismo , Transgenes/genética
4.
FEBS J ; 277(20): 4322-37, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20860623

RESUMEN

A multiprotein complex encompassing a transcription regulator, cardiac ankyrin repeat protein (CARP), and the calpain 3 protease was identified in the N2A elastic region of the giant sarcomeric protein titin. The present study aimed to investigate the function(s) of this complex in the skeletal muscle. We demonstrate that CARP subcellular localization is controlled by the activity of calpain 3: the higher the calpain 3, the more important the sarcomeric retention of CARP. This regulation would occur through cleavage of the N-terminal end of CARP by the protease. We show that, upon CARP over-expression, the transcription factor nuclear factor NF-κB p65 DNA-binding activity decreases. Taken as a whole, CARP and its regulator calpain 3 appear to occupy a central position in the important cell fate-governing NF-κB pathway. Interestingly, the expression of the atrophying protein MURF1, one of NF-κB main targets, remains unchanged in presence of CARP, suggesting that the pathway encompassing calpain 3/CARP/NF-κB does not play a role in muscle atrophy. With NF-κB also having anti-apoptotic effects, the inability of calpain 3 to lower CARP-driven inhibition of NF-κB could reduce muscle cell survival, hence partly accounting for the dystrophic pattern observed in limb girdle muscular dystrophy 2A, a pathology resulting from the protease deficiency.


Asunto(s)
Calpaína/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Humanos , Distrofia Muscular de Cinturas/patología , FN-kappa B/antagonistas & inhibidores
5.
FEBS J ; 276(3): 669-84, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19143834

RESUMEN

In an attempt to identify potential therapeutic targets for the correction of muscle wasting, the gene expression of several pivotal proteins involved in protein metabolism was investigated in experimental atrophy induced by transient or definitive denervation, as well as in four animal models of muscular dystrophies (deficient for calpain 3, dysferlin, alpha-sarcoglycan and dystrophin, respectively). The results showed that: (a) the components of the ubiquitin-proteasome pathway are upregulated during the very early phases of atrophy but do not greatly increase in the muscular dystrophy models; (b) forkhead box protein O1 mRNA expression is augmented in the muscles of a limb girdle muscular dystrophy 2A murine model; and (c) the expression of cardiac ankyrin repeat protein (CARP), a regulator of transcription factors, appears to be persistently upregulated in every condition, suggesting that CARP could be a hub protein participating in common pathological molecular pathway(s). Interestingly, the mRNA level of a cell cycle inhibitor known to be upregulated by CARP in other tissues, p21(WAF1/CIP1), is consistently increased whenever CARP is upregulated. CARP overexpression in muscle fibres fails to affect their calibre, indicating that CARP per se cannot initiate atrophy. However, a switch towards fast-twitch fibres is observed, suggesting that CARP plays a role in skeletal muscle plasticity. The observation that p21(WAF1/CIP1) is upregulated, put in perspective with the effects of CARP on the fibre type, fits well with the idea that the mechanisms at stake might be required to oppose muscle remodelling in skeletal muscle.


Asunto(s)
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Animales , Biomarcadores/metabolismo , Calpaína/deficiencia , Calpaína/genética , Calpaína/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Masculino , Ratones , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/genética , Distrofias Musculares/genética , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA