Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(17): 13271-13278, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635261

RESUMEN

Composition dependent tuning of electronic and optical properties in semiconducting two-dimensional (2D) transition metal dichalcogenide (TMDC) alloys is promising for tailoring the materials for optoelectronics. Here, we report a solution-based synthesis suitable to obtain predominantly monolayered 2D semiconducting Mo1-xWxS2 nanosheets (NSs) with controlled composition as substrate-free colloidal inks. Atomic-level structural analysis by high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy (EDXS) depicts the distribution of individual atoms within the Mo1-xWxS2 NSs and reveals the tendency for domain formation, especially at low molar tungsten fractions. These domains cause a broadening in the associated ensemble-level Raman spectra, confirming the extrapolation of the structural information from the microscopic scale to the properties of the entire sample. A characterization of the Mo1-xWxS2 NSs by steady-state optical spectroscopy shows that a band gap tuning in the range of 1.89-2.02 eV (614-655 nm) and a spin-orbit coupling-related exciton splitting of 0.16-0.38 eV can be achieved, which renders colloidal methods viable for upscaling low cost synthetic approaches toward application-taylored colloidal TMDCs.

2.
Small ; 19(12): e2206379, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642834

RESUMEN

Heterostructured Au/CuS nanocrystals (NCs) exhibit localized surface plasmon resonance (LSPR) centered at two different wavelengths (551 and 1051 nm) with a slight broadening compared to respective homostructured Au and CuS NC spectra. By applying ultrafast transient absorption spectroscopy we show that a resonant excitation at the respective LSPR maxima of the heterostructured Au/CuS NCs leads to the characteristic hot charge carrier relaxation associated with both LSPRs in both cases. A comparison of the dual plasmonic heterostructure with a colloidal mixture of homostructured Au and CuS NCs shows that the coupled dual plasmonic interaction is only active in the heterostructured Au/CuS NCs. By investigating the charge carrier dynamics of the process, we find that the observed interaction is faster than phononic or thermal processes (< 100 fs). The relaxation of the generated hot charge carriers is faster for heterostructured nanocrystals and indicates that the interaction occurs as an energy transfer (we propose Landau damping or interaction via LSPR beat oscillations as possible mechanisms) or charge carrier transfer between both materials. Our results strengthen the understanding of multiplasmonic interactions in heterostructured Au/CuS NCs and will significantly advance applications where these interactions are essential, such as catalytic reactions.

3.
Small ; : e2309533, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38078785

RESUMEN

In this work, thin composite films of zeolitic imidazolate frameworks (ZIFs) and colloidal two-dimensional (2D) core-crown CdSe/CdS nanoplatelet (NPL) emitters with minimal scattering are formed by a cycled growth method and yield highly transparent coatings with strong and narrow photoluminescence of the NPLs at 546 nm (FWHM: 25 nm) in a solid-state composite structure. The porous ZIF matrix acts as functional encapsulation for the emitters and enables the adsorption of the guest molecules water and ethanol. The adsorption and desorption of the guest molecules is then characterized by a reversable photoluminescence change of the embedded NPLs. The transmittance of the composite films exceeds the values of uncoated glass at visible wavelengths where the NPL emitters show no absorption (>540 nm) and renders them anti-reflective coatings. At NPL absorption wavelengths (440-540 nm), the transmittance of the thin composite film-coated glass lies close to the transmittance of uncoated glass. The fast formation of innovative, smooth NPL/ZIF composite films without pre-polymerizing the colloidal 2D nanostructures first provides a powerful tool toward application-oriented photoluminescence-based gas sensing.

4.
Small ; 19(23): e2207101, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36892154

RESUMEN

The electronic structure of mono and bilayers of colloidal 2H-MoS2 nanosheets synthesized by wet-chemistry using potential-modulated absorption spectroscopy (EMAS), differential pulse voltammetry, and electrochemical gating measurements is investigated. The energetic positions of the conduction and valence band edges of the direct and indirect bandgap are reported and observe strong bandgap renormalization effects, charge screening of the exciton, as well as intrinsic n-doping of the as-synthesized material. Two distinct transitions in the spectral regime associated with the C exciton are found, which overlap into a broad signal upon filling the conduction band. In contrast to oxidation, the reduction of the nanosheets is largely reversible, enabling potential applications for reductive electrocatalysis. This work demonstrates that EMAS is a highly sensitive tool for determining the electronic structure of thin films with a few nanometer thicknesses and that colloidal chemistry affords high-quality transition metal dichalcogenide nanosheets with an electronic structure comparable to that of exfoliated samples.

5.
Langmuir ; 38(37): 11149-11159, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36067458

RESUMEN

Two-dimensional (2D) semiconductor nanoplatelets (NPLs) are strongly photoluminescent materials with interesting properties for optoelectronics. Especially their narrow photoluminescence paired with a high quantum yield is promising for light emission applications with high color purity. However, retaining these features in solid-state thin films together with an efficient encapsulation of the NPLs is a challenge, especially when trying to achieve high-quality films with a defined optical density and low surface roughness. Here, we show photoluminescent polymer-encapsulated inorganic-organic nanocomposite coatings of 2D CdSe/CdS NPLs in poly(diallyldimethylammonium chloride) (PDDA) and poly(ethylenimine) (PEI), which are prepared by sequential layer-by-layer (LbL) deposition. The electrostatic interaction between the positively charged polyelectrolytes and aqueous phase-transferred NPLs with negatively charged surface ligands is used as a driving force to achieve self-assembled nanocomposite coatings with a well-controlled layer thickness and surface roughness. Increasing the repulsive forces between the NPLs by increasing the pH value of the dispersion leads to the formation of nanocomposites with all NPLs arranging flat on the substrate, while the surface roughness of the 165 nm (50 bilayers) thick coating decreases to Ra = 14 nm. The photoluminescence properties of the nanocomposites are determined by the atomic layer thickness of the NPLs and the 11-mercaptoundecanoic acid ligand used for their phase transfer. Both the full width at half-maximum (20.5 nm) and the position (548 nm) of the nanocomposite photoluminescence are retained in comparison to the colloidal CdSe/CdS NPLs in aqueous dispersion, while the measured photoluminescence quantum yield of 5% is competitive to state-of-the-art nanomaterial coatings. Our approach yields stable polymer-encapsulated CdSe/CdS NPLs in smooth coatings with controllable film thickness, rendering the LbL deposition technique a powerful tool for the fabrication of solid-state photoluminescent nanocomposites.

6.
Angew Chem Int Ed Engl ; 60(3): 1152-1175, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-32173981

RESUMEN

We review the field of organic-inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface.

7.
Angew Chem Int Ed Engl ; 57(36): 11559-11563, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-29962052

RESUMEN

An optical switch with two distinct resonances is formed by combining PbS nanocrystals and the conductive polymer poly[sodium 2-(2-ethynyl-4-methoxyphenoxy)acetate] (PAE) into a hybrid thin film. Infrared excitation of the nanocrystals invokes charge transfer and consecutive polaron formation in the PAE, which activates the switch for excited-state absorption at visible frequencies. The optical modulation of the photocurrent response of the switch exhibits highly wavelength-selective ON/OFF ratios. Transient absorption spectroscopy shows that the polaron formation is correlated with the excited state of the nanocrystals, opening up new perspectives for photonic data processing. Such correlated activated absorption can be exploited to enhance the sensitivity for one optical signal by a second light source of different frequency as part of an optical amplifier or a device with AND logic.

8.
Angew Chem Int Ed Engl ; 56(45): 14061-14065, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28859243

RESUMEN

We functionalize PbS nanocrystals with the organic semiconductor Zn ß-tetraaminophthalocyanine to design a nanostructured solid-state material with frequent organic-inorganic interfaces. By transient absorption and fluorescence spectroscopy, we investigate the optoelectronic response of this hybrid material under near-infrared excitation to find efficient charge transfer from the nanocrystals to the molecules. We demonstrate that the material undergoes cooperative sensitization of two nanocrystals followed by photon upconversion and singlet emission of the organic semiconductor. The upconversion efficiency resembles that of comparable systems in solution, which we attribute to the large amount of interfaces present in this solid-state film. We anticipate that this synthetic strategy has great prospects for increasing the open-circuit voltage in PbS nanocrystal-based solar cells.

9.
Nanoscale ; 15(12): 5679-5688, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36861175

RESUMEN

2D semiconducting transition metal dichalcogenides (TMDCs) are highly promising materials for future spin- and valleytronic applications and exhibit an ultrafast response to external (optical) stimuli which is essential for optoelectronics. Colloidal nanochemistry on the other hand is an emerging alternative for the synthesis of 2D TMDC nanosheet (NS) ensembles, allowing for the control of the reaction via tunable precursor and ligand chemistry. Up to now, wet-chemical colloidal syntheses yielded intertwined/agglomerated NSs with a large lateral size. Here, we show a synthesis method for 2D mono- and bilayer MoS2 nanoplatelets with a particularly small lateral size (NPLs, 7.4 nm ± 2.2 nm) and MoS2 NSs (22 nm ± 9 nm) as a reference by adjusting the molybdenum precursor concentration in the reaction. We find that in colloidal 2D MoS2 syntheses initially a mixture of the stable semiconducting and the metastable metallic crystal phase is formed. 2D MoS2 NPLs and NSs then both undergo a full transformation to the semiconducting crystal phase by the end of the reaction, which we quantify by X-ray photoelectron spectroscopy. Phase pure semiconducting MoS2 NPLs with a lateral size approaching the MoS2 exciton Bohr radius exhibit strong additional lateral confinement, leading to a drastically shortened decay of the A and B exciton which is characterized by ultrafast transient absorption spectroscopy. Our findings represent an important step for utilizing colloidal TMDCs, for example small MoS2 NPLs represent an excellent starting point for the growth of heterostructures for future colloidal photonics.

10.
Nanoscale Adv ; 4(2): 590-599, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36132696

RESUMEN

Colloidal two-dimensional (2D) lead chalcogenide nanoplatelets (NPLs) represent highly interesting materials for near- and short wave-infrared applications including innovative glass fiber optics exhibiting negligible attenuation. In this work, we demonstrate a direct synthesis route for 2D PbSe NPLs with cubic rock salt crystal structure at low reaction temperatures of 0 °C and room temperature. A lateral size tuning of the PbSe NPLs by controlling the temperature and by adding small amounts of octylamine to the reaction leads to excitonic absorption features in the range of 1.55-1.24 eV (800-1000 nm) and narrow photoluminescence (PL) reaching the telecom O-, E- and S-band (1.38-0.86 eV, 900-1450 nm). The PL quantum yield of the as-synthesized PbSe NPLs is more than doubled by a postsynthetic treatment with CdCl2 (e.g. from 14.7% to 37.4% for NPLs emitting at 980 nm with a FWHM of 214 meV). An analysis of the slightly asymmetric PL line shape of the PbSe NPLs and their characterization by ultrafast transient absorption and time-resolved PL spectroscopy reveal a surface trap related PL contribution which is successfully reduced by the CdCl2 treatment from 40% down to 15%. Our results open up new pathways for a direct synthesis and straightforward incorporation of colloidal PbSe NPLs as efficient infrared emitters at technologically relevant telecom wavelengths.

11.
J Phys Chem Lett ; 12(1): 680-685, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33395303

RESUMEN

Colloidal PbS nanoplatelets (NPLs) are highly interesting materials for near-infrared optoelectronic applications. We use ultrafast transient optical absorption spectroscopy to study the characteristics and dynamics of photoexcited excitons in ultrathin PbS NPLs with a cubic crystal structure. NPLs are synthesized at near room temperature from lead oleate and thiourea precursors; they show an optical absorption onset at 680 nm (1.8 eV) and photoluminescence at 720 nm (1.7 eV). By postsynthetically treating PbS NPLs with CdCl2, their photoluminescence quantum yield is strongly enhanced from 1.4% to 19.4%. The surface treatment leads to an increased lead to sulfur ratio in the structures and associated reduced nonradiative recombination. Additionally, exciton-phonon interactions in pristine and CdCl2 treated NPLs at frequencies of 1.96 and 2.04 THz are apparent from coherent oscillations in the transient absorption spectra. This study is an important step forward in unraveling and controlling the optical properties of IV-VI semiconductor NPLs.

12.
Nanoscale ; 11(44): 21569-21576, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31688863

RESUMEN

Solution-processable two-dimensional (2D) semiconductors with chemically tunable thickness and associated tunable band gaps are highly promising materials for ultrathin optoelectronics. Here, the properties of free charge carriers and excitons in 2D PbS nanosheets of different thickness are investigated by means of optical pump-terahertz probe spectroscopy. By analyzing the frequency-dependent THz response, a large quantum yield of excitons is found. The scattering time of free charge carriers increases with nanosheet thickness, which is ascribed to reduced effects of surface defects and ligands in thicker nanosheets. The data discussed provide values for the DC mobility in the range 550-1000 cm2 V-1 s-1 for PbS nanosheets with thicknesses ranging from 4 to 16 nm. Results underpin the suitability of colloidal 2D PbS nanosheets for optoelectronic applications.

13.
ACS Appl Mater Interfaces ; 11(51): 48271-48280, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31778068

RESUMEN

We report an optically gated transistor composed of CdSe nanocrystals (NCs), sensitized with the dye zinc ß-tetraaminophthalocyanine for operation in the first telecom window. This device shows a high ON/OFF ratio of 6 orders of magnitude in the red spectral region and an unprecedented 4.5 orders of magnitude at 847 nm. By transient absorption spectroscopy, we reveal that this unexpected infrared sensitivity is due to electron transfer from the dye to the CdSe NCs within 5 ps. We show by time-resolved photocurrent measurements that this enables fast rise times during near-infrared optical gating of 47 ± 11 ns. Electronic coupling and accelerated nonradiative recombination of charge carriers at the interface between the dye and the CdSe NCs are further corroborated by steady-state and time-resolved photoluminescence measurements. Field-effect transistor measurements indicate that the increase in photocurrent upon laser illumination is mainly due to the increase in the carrier concentration while the mobility remains unchanged. Our results illustrate that organic dyes as ligands for NCs invoke new optoelectronic functionalities, such as fast optical gating at sub-bandgap optical excitation energies.

14.
Nanoscale ; 10(47): 22362-22373, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30474672

RESUMEN

Charge carrier dynamics of semiconductor nano-heterostructures are determined by band alignment and lattice mismatch of the adjacent materials. However, quantum efficiencies for the separation of excited charge carriers at such an interface are hard to predict and cannot yet be easily controlled. In this work we examine nanorods with a severely strained, axial CdTe/CdS interface using femtosecond transient absorption spectroscopy. We show that charge separation is mitigated by equal contributions of valence band distortion and formation of coulomb pairs across the interface. Left undisturbed such localised excitons relax rapidly via non-radiative recombination channels. By adding a competitive hole acceptor that disrupts the coulomb interaction we overcome the synergetic co-localisation of the carriers and realise charge separation. The thus created long-lived state can be exploited for a broad range of applications such as photocatalysis, water splitting, and switchable nanodevices.

15.
Science ; 356(6333): 69-73, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28386010

RESUMEN

All-printed transistors consisting of interconnected networks of various types of two-dimensional nanosheets are an important goal in nanoscience. Using electrolytic gating, we demonstrate all-printed, vertically stacked transistors with graphene source, drain, and gate electrodes, a transition metal dichalcogenide channel, and a boron nitride (BN) separator, all formed from nanosheet networks. The BN network contains an ionic liquid within its porous interior that allows electrolytic gating in a solid-like structure. Nanosheet network channels display on:off ratios of up to 600, transconductances exceeding 5 millisiemens, and mobilities of >0.1 square centimeters per volt per second. Unusually, the on-currents scaled with network thickness and volumetric capacitance. In contrast to other devices with comparable mobility, large capacitances, while hindering switching speeds, allow these devices to carry higher currents at relatively low drive voltages.

16.
J Phys Chem Lett ; 7(20): 4191-4196, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27715056

RESUMEN

The implementation of next generation ultrathin electronics by applying highly promising dimensionality-dependent physical properties of two-dimensional (2D) semiconductors is ever increasing. In this context, the van der Waals layered semiconductor InSe has proven its potential as photodetecting material with high charge carrier mobility. We have determined the photogeneration charge carrier quantum yield and mobility in atomically thin colloidal InSe nanosheets (inorganic layer thickness 0.8-1.7 nm, mono/double-layers, ≤ 5 nm including ligands) by ultrafast transient terahertz (THz) spectroscopy. A near unity quantum yield of free charge carriers is determined for low photoexcitation density. The charge carrier quantum yield decreases at higher excitation density due to recombination of electrons and holes, leading to the formation of neutral excitons. In the THz frequency domain, we probe a charge mobility as high as 20 ± 2 cm2/(V s). The THz mobility is similar to field-effect transistor mobilities extracted from unmodified exfoliated thin InSe devices. The current work provides the first results on charge carrier dynamics in ultrathin colloidal InSe nanosheets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA