Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 65(6): 100548, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649096

RESUMEN

DHA is abundant in the brain where it regulates cell survival, neurogenesis, and neuroinflammation. DHA can be obtained from the diet or synthesized from alpha-linolenic acid (ALA; 18:3n-3) via a series of desaturation and elongation reactions occurring in the liver. Tracer studies suggest that dietary DHA can downregulate its own synthesis, but the mechanism remains undetermined and is the primary objective of this manuscript. First, we show by tracing 13C content (δ13C) of DHA via compound-specific isotope analysis, that following low dietary DHA, the brain receives DHA synthesized from ALA. We then show that dietary DHA increases mouse liver and serum EPA, which is dependant on ALA. Furthermore, by compound-specific isotope analysis we demonstrate that the source of increased EPA is slowed EPA metabolism, not increased DHA retroconversion as previously assumed. DHA feeding alone or with ALA lowered liver elongation of very long chain (ELOVL2, EPA elongation) enzyme activity despite no change in protein content. To further evaluate the role of ELOVL2, a liver-specific Elovl2 KO was generated showing that DHA feeding in the presence or absence of a functional liver ELOVL2 yields similar results. An enzyme competition assay for EPA elongation suggests both uncompetitive and noncompetitive inhibition by DHA depending on DHA levels. To translate our findings, we show that DHA supplementation in men and women increases EPA levels in a manner dependent on a SNP (rs953413) in the ELOVL2 gene. In conclusion, we identify a novel feedback inhibition pathway where dietary DHA downregulates its liver synthesis by inhibiting EPA elongation.


Asunto(s)
Ácidos Docosahexaenoicos , Regulación hacia Abajo , Ácido Eicosapentaenoico , Hígado , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/administración & dosificación , Animales , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones , Regulación hacia Abajo/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ácido alfa-Linolénico/farmacología , Ácido alfa-Linolénico/metabolismo , Ácido alfa-Linolénico/administración & dosificación
2.
Brain Behav Immun ; 107: 153-164, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202169

RESUMEN

Sleep is a natural physiological state, tightly regulated through several neuroanatomical and neurochemical systems, which is essential to maintain physical and mental health. Recent studies revealed that the functions of microglia, the resident immune cells of the brain, differ along the sleep-wake cycle. Inflammatory cytokines, such as interleukin-1ß and tumor necrosis factor-α, mainly produced by microglia in the brain, are also well-known to promote sleep. However, the contributing role of microglia on sleep regulation remains largely elusive, even more so in females. Given the higher prevalence of various sleep disorders in women, we aimed to determine the role of microglia in regulating the sleep-wake cycle specifically in female mice. Microglia were depleted in adult female mice with inhibitors of the colony-stimulating factor 1 receptor (CSF1R) (PLX3397 or PLX5622), which is required for microglial population maintenance. This led to a 65-73% reduction of the microglial population, as confirmed by immunofluorescence staining against IBA1 (marker of microglia/macrophages) and TMEM119 (microglia-specific marker) in the reticular nucleus of the thalamus and primary motor cortex. The spontaneous sleep-wake cycle was evaluated at steady-state, during microglial homeostasis disruption and after complete microglial repopulation, upon cessation of treatment with the inhibitors of CSF1R, using electroencephalography (EEG) and electromyography (EMG). We found that microglia-depleted female mice spent more time in non-rapid eye movement (NREM) sleep and had an increased number of NREM sleep episodes, which was partially restored after microglial total repopulation. To determine whether microglia could regulate sleep locally by modulating synaptic transmission, we used patch clamp to record spontaneous activity of pyramidal neurons in the primary motor cortex, which showed an increase of excitatory synaptic transmission during the dark phase. These changes in neuronal activity were modulated by microglial depletion in a phase-dependent manner. Altogether, our results indicate that microglia are involved in the sleep regulation of female mice, further strengthening their potential implication in the development and/or progression of sleep disorders. Furthermore, our findings indicate that microglial repopulation can contribute to normalizing sleep alterations caused by their partial depletion.


Asunto(s)
Movimientos Oculares , Trastornos del Sueño-Vigilia , Femenino , Animales , Ratones , Duración del Sueño , Factor de Necrosis Tumoral alfa
3.
Mol Psychiatry ; 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207585

RESUMEN

Type-2 Diabetes (T2D) is characterized by insulin resistance and accompanied by psychiatric comorbidities including major depressive disorders (MDD). Patients with T2D are twice more likely to suffer from MDD and clinical studies have shown that insulin resistance is positively correlated with the severity of depressive symptoms. However, the potential contribution of central insulin signaling in MDD in patients with T2D remains elusive. Here we hypothesized that insulin modulates the serotonergic (5-HT) system to control emotional behavior and that insulin resistance in 5-HT neurons contributes to the development of mood disorders in T2D. Our results show that insulin directly modulates the activity of dorsal raphe (DR) 5-HT neurons to dampen 5-HT neurotransmission through a 5-HT1A receptor-mediated inhibitory feedback. In addition, insulin-induced 5-HT neuromodulation is necessary to promote anxiolytic-like effect in response to intranasal insulin delivery. Interestingly, such an anxiolytic effect of intranasal insulin as well as the response of DR 5-HT neurons to insulin are both blunted in high-fat diet-fed T2D animals. Altogether, these findings point to a novel mechanism by which insulin directly modulates the activity of DR 5-HT neurons to dampen 5-HT neurotransmission and control emotional behaviors, and emphasize the idea that impaired insulin-sensitivity in these neurons is critical for the development of T2D-associated mood disorders.

4.
Glia ; 70(1): 50-70, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34519378

RESUMEN

Westernization of dietary habits has led to a progressive reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental disorders, conditions in which myelination processes are abnormal, leading to defects in brain functional connectivity. Only little is known about the role of n-3 PUFAs in oligodendrocyte physiology and white matter development. Here, we show that lifelong n-3 PUFA deficiency disrupts oligodendrocytes maturation and myelination processes during the postnatal period in mice. This has long-term deleterious consequences on white matter organization and hippocampus-prefrontal functional connectivity in adults, associated with cognitive and emotional disorders. Promoting developmental myelination with clemastine, a first-generation histamine antagonist and enhancer of oligodendrocyte precursor cell differentiation, rescues memory deficits in n-3 PUFA deficient animals. Our findings identify a novel mechanism through which n-3 PUFA deficiency alters brain functions by disrupting oligodendrocyte maturation and brain myelination during the neurodevelopmental period.


Asunto(s)
Ácidos Grasos Omega-3 , Animales , Encéfalo , Ratones , Vaina de Mielina , Neurogénesis , Oligodendroglía
5.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35743093

RESUMEN

Long-chain (LC) n-3 polyunsaturated fatty acids (PUFAs) have drawn attention in the field of neuropsychiatric disorders, in particular depression. However, whether dietary supplementation with LC n-3 PUFA protects from the development of mood disorders is still a matter of debate. In the present study, we studied the effect of a two-month exposure to isocaloric diets containing n-3 PUFAs in the form of relatively short-chain (SC) (6% of rapeseed oil, enriched in α-linolenic acid (ALA)) or LC (6% of tuna oil, enriched in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) PUFAs on behavior and synaptic plasticity of mice submitted or not to a chronic social defeat stress (CSDS), previously reported to alter emotional and social behavior, as well as synaptic plasticity in the nucleus accumbens (NAc). First, fatty acid content and lipid metabolism gene expression were measured in the NAc of mice fed a SC (control) or LC n-3 (supplemented) PUFA diet. Our results indicate that LC n-3 supplementation significantly increased some n-3 PUFAs, while decreasing some n-6 PUFAs. Then, in another cohort, control and n-3 PUFA-supplemented mice were subjected to CSDS, and social and emotional behaviors were assessed, together with long-term depression plasticity in accumbal medium spiny neurons. Overall, mice fed with n-3 PUFA supplementation displayed an emotional behavior profile and electrophysiological properties of medium spiny neurons which was distinct from the ones displayed by mice fed with the control diet, and this, independently of CSDS. Using the social interaction index to discriminate resilient and susceptible mice in the CSDS groups, n-3 supplementation promoted resiliency. Altogether, our results pinpoint that exposure to a diet rich in LC n-3 PUFA, as compared to a diet rich in SC n-3 PUFA, influences the NAc fatty acid profile. In addition, electrophysiological properties and emotional behavior were altered in LC n-3 PUFA mice, independently of CSDS. Our results bring new insights about the effect of LC n-3 PUFA on emotional behavior and synaptic plasticity.


Asunto(s)
Ácidos Grasos Omega-3 , Núcleo Accumbens , Animales , Dieta , Suplementos Dietéticos , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Insaturados/metabolismo , Humanos , Ratones , Núcleo Accumbens/metabolismo
6.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055048

RESUMEN

Exposure to repeated social stress may cause maladaptive emotional reactions that can be reduced by healthy nutritional supplementation. Histaminergic neurotransmission has a central role in orchestrating specific behavioural responses depending on the homeostatic state of a subject, but it remains to be established if it participates in the protective effects against the insults of chronic stress afforded by a healthy diet. By using C57BL/6J male mice that do not synthesize histamine (Hdc-/-) and their wild type (Hdc+/+) congeners we evaluated if the histaminergic system participates in the protective action of a diet enriched with polyunsaturated fatty acids and vitamin A on the deleterious effect of chronic stress. Behavioural tests across domains relevant to cognition and anxiety were performed. Hippocampal synaptic plasticity, cytokine expression, hippocampal fatty acids, oxylipins and microbiota composition were also assessed. Chronic stress induced social avoidance, poor recognition memory, affected hippocampal long-term potentiation, changed the microbiota profile, brain cytokines, fatty acid and oxylipins composition of both Hdc-/- and Hdc+/+ mice. Dietary enrichment counteracted stress-induced deficits only in Hdc+/+ mice as histamine deficiency prevented almost all the diet-related beneficial effects. Interpretation: Our results reveal a previously unexplored and novel role for brain histamine as a mediator of many favorable effects of the enriched diet. These data present long-reaching perspectives in the field of nutritional neuropsychopharmacology.


Asunto(s)
Dieta , Disbiosis , Microbioma Gastrointestinal , Histamina/metabolismo , Conducta Social , Estrés Psicológico , Animales , Conducta Animal , Biomarcadores , Peso Corporal , Citocinas/metabolismo , Ácidos Grasos/metabolismo , Expresión Génica , Hipocampo/metabolismo , Hipocampo/fisiopatología , Locomoción , Masculino , Metagenoma , Metagenómica , Ratones , Ratones Noqueados , Modelos Animales
7.
Int J Obes (Lond) ; 45(3): 588-598, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33223517

RESUMEN

BACKGROUND: Early consumption of obesogenic diets, rich in saturated fat and added sugar, is associated with a plethora of biological dysfunctions, at both peripheral and brain levels. Obesity is also linked to decreased vitamin A bioavailability, an essential molecule for brain plasticity and memory function. METHODS: Here we investigated in mice whether dietary vitamin A supplementation (VAS) could prevent some of the metabolic, microbiota, neuronal and cognitive alterations induced by obesogenic, high-fat and high-sugar diet (HFSD) exposure from weaning to adulthood, i.e. covering periadolescent period. RESULTS: As expected, VAS was effective in enhancing peripheral vitamin A levels as well as hippocampal retinoic acid levels, the active metabolite of vitamin A, regardless of the diet. VAS attenuated HFSD-induced excessive weight gain, without affecting metabolic changes, and prevented alterations of gut microbiota α-diversity. In HFSD-fed mice, VAS prevented recognition memory deficits but had no effect on aversive memory enhancement. Interestingly, VAS alleviated both HFSD-induced higher neuronal activation and lower glucocorticoid receptor phosphorylation in the hippocampus after training. CONCLUSION: Dietary VAS was protective against the deleterious effects of early obesogenic diet consumption on hippocampal function, possibly through modulation of the gut-brain axis.


Asunto(s)
Cognición/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Vitamina A , Animales , Eje Cerebro-Intestino/efectos de los fármacos , Hipocampo/química , Hipocampo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Vitamina A/administración & dosificación , Vitamina A/farmacología
8.
Br J Nutr ; 126(9): 1431-1440, 2021 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-33441196

RESUMEN

Binge eating behaviour (BE) is the major symptom of binge eating disorder (BED). This study aimed to compare the nutritional intake in the presence or absence of BE, with a particular focus on dietary n-6:n-3 ratio, to assess the association between BE and impulsivity and the mediating effect of BMI on this association. A total of 450 university students (age 18-28 years) participated. The self-administered questionnaires were a semi-quantitative FFQ and the UPPS-P Impulsive Behavior Scale and the binge eating scale. The average BE score was 11·6 (se 7·388), and 20 % of the total participants scored above the cut-off of 17, thus presenting BE with 95 % CI of 16·3, 23·7 %. Our study revealed that greater BMI, higher total energy intake, greater negative urgency and positive urgency scores were significantly associated with BE. Participants with high value of dietary n-6:n-3 ratio were 1·335 more at risk to present a BE compared with those with a lower value of this ratio (P = 0·017). The relationship between BE score and UPPS domains score was not mediated by the BMI. This is the first study reporting a link between high dietary n-6:n-3 ratio and BE as well as the fact that BE was linked to both, negative and positive urgencies, and that the association between BE and impulsivity was not mediated by BMI. These findings can help to deal more efficiently with people suffering from BE, a symptom that can precede the development of BED.


Asunto(s)
Trastorno por Atracón , Bulimia , Conducta Impulsiva , Factores Sociodemográficos , Adolescente , Adulto , Dieta , Ingestión de Alimentos , Ácidos Grasos Omega-3 , Ácidos Grasos Omega-6 , Humanos , Adulto Joven
9.
Proc Natl Acad Sci U S A ; 120(33): e2309992120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37531376
10.
Pharmacol Rev ; 70(1): 12-38, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29217656

RESUMEN

Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.


Asunto(s)
Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Animales , Encéfalo/metabolismo , Humanos , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/fisiología
11.
J Neurosci ; 39(30): 5935-5948, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31160539

RESUMEN

Epidemiological studies indicate that insulin resistance (IR), a hallmark of type 2 diabetes, is associated with an increased risk of major depression. Here, we demonstrated that male mice fed a high-fat diet (HFD) exhibited peripheral metabolic impairments reminiscent of IR accompanied by elevated circulating levels of branched-chain amino acids (BCAAs), whereas both parameters were normalized by chronic treatment with metformin (Met). Given the role of BCAAs in the regulation of tryptophan influx into the brain, we then explored the activity of the serotonin (5-HT) system. Our results indicated that HFD-fed mice displayed impairment in the electrical activity of dorsal raphe 5-HT neurons, attenuated hippocampal extracellular 5-HT concentrations and anxiety, one of the most visible and early symptoms of depression. On the contrary, Met stimulated 5-HT neurons excitability and 5-HT neurotransmission while hindering HFD-induced anxiety. Met also promoted antidepressant-like activities as observed with fluoxetine. In light of these data, we designed a modified HFD in which BCAA dietary supply was reduced by half. Deficiency in BCAAs failed to reverse HFD-induced metabolic impairments while producing antidepressant-like activity and enhancing the behavioral response to fluoxetine. Our results suggest that Met may act by decreasing circulating BCAAs levels to favor serotonergic neurotransmission in the hippocampus and promote antidepressant-like effects in mice fed an HFD. These findings also lead us to envision that a diet poor in BCAAs, provided either alone or as add-on therapy to conventional antidepressant drugs, could help to relieve depressive symptoms in patients with metabolic comorbidities.SIGNIFICANCE STATEMENT Insulin resistance in humans is associated with increased risk of anxiodepressive disorders. Such a relationship has been also found in rodents fed a high-fat diet (HFD). To determine whether insulin-sensitizing strategies induce anxiolytic- and/or antidepressant-like activities and to investigate the underlying mechanisms, we tested the effects of metformin, an oral antidiabetic drug, in mice fed an HFD. Metformin reduced levels of circulating branched-chain amino acids, which regulate tryptophan uptake within the brain. Moreover, metformin increased hippocampal serotonergic neurotransmission while promoting anxiolytic- and antidepressant-like effects. Moreover, a diet poor in these amino acids produced similar beneficial behavioral property. Collectively, these results suggest that metformin could be used as add-on therapy to a conventional antidepressant for the comorbidity between metabolic and mental disorders.


Asunto(s)
Aminoácidos de Cadena Ramificada/sangre , Ansiolíticos/uso terapéutico , Antidepresivos/uso terapéutico , Resistencia a la Insulina/fisiología , Metformina/uso terapéutico , Aminoácidos de Cadena Ramificada/antagonistas & inhibidores , Animales , Ansiolíticos/farmacología , Antidepresivos/farmacología , Ansiedad/sangre , Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Depresión/sangre , Depresión/tratamiento farmacológico , Depresión/psicología , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Masculino , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL
12.
J Lipid Res ; 61(11): 1480-1490, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32826272

RESUMEN

N-acylethanolamines (NAEs) are endogenous lipid-signaling molecules derived from fatty acids that regulate numerous biological functions, including in the brain. Interestingly, NAEs are elevated in the absence of fatty acid amide hydrolase (FAAH) and following CO2-induced ischemia/hypercapnia, suggesting a neuroprotective response. Tetracosahexaenoic acid (THA) is a product and precursor to DHA; however, the NAE product, tetracosahexaenoylethanolamide (THEA), has never been reported. Presently, THEA was chemically synthesized as an authentic standard to confirm THEA presence in biological tissues. Whole brains were collected and analyzed for unesterified THA, total THA, and THEA in wild-type and FAAH-KO mice that were euthanized by either head-focused microwave fixation, CO2 + microwave, or CO2 only. PPAR activity by transient transfection assay and ex vivo neuronal output in medium spiny neurons (MSNs) of the nucleus accumbens by patch clamp electrophysiology were determined following THEA exposure. THEA in the wild-type mice was nearly doubled (P < 0.05) following ischemia/hypercapnia (CO2 euthanization) and up to 12 times higher (P < 0.001) in the FAAH-KO compared with wild-type. THEA did not increase (P > 0.05) transcriptional activity of PPARs relative to control, but 100 nM of THEA increased (P < 0.001) neuronal output in MSNs of the nucleus accumbens. Here were identify a novel NAE, THEA, in the brain that is elevated upon ischemia/hypercapnia and by KO of the FAAH enzyme. While THEA did not activate PPAR, it augmented the excitability of MSNs in the nucleus accumbens. Overall, our results suggest that THEA is a novel NAE that is produced in the brain upon ischemia/hypercapnia and regulates neuronal excitation.


Asunto(s)
Etanolaminas/metabolismo , Isquemia/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Amidohidrolasas/deficiencia , Amidohidrolasas/metabolismo , Animales , Dióxido de Carbono/metabolismo , Etanolaminas/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/química , Fármacos Neuroprotectores/química
13.
Brain Behav Immun ; 85: 21-28, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31278982

RESUMEN

The results of several meta-analyses suggest that eicosapentaenoic acid (EPA) supplementation is therapeutic in managing the symptoms of major depression. It was previously assumed that because EPA is extremely low in the brain it did not cross the blood-brain barrier and any therapeutic effects it exerted would be via the periphery. However, more recent studies have established that EPA does enter the brain, but is rapidly metabolised following entry. While EPA does not accumulate within the brain, it is present in microglia and homeostatic mechanisms may regulate its esterification to phospholipids that serve important roles in cell signaling. Furthermore, a variety of signaling molecules from EPA have been described in the periphery and they have the potential to exert effects within the brain. If EPA is confirmed to be therapeutic in major depression as a result of adequately powered randomized clinical trials, future research on brain EPA metabolism could lead to the discovery of novel targets for treating or preventing major depression.


Asunto(s)
Trastorno Depresivo Mayor , Ácido Eicosapentaenoico , Encéfalo , Depresión , Trastorno Depresivo Mayor/tratamiento farmacológico , Ácidos Docosahexaenoicos , Humanos , Fosfolípidos
14.
Brain Behav Immun ; 84: 23-35, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31731013

RESUMEN

Metabolic syndrome represents a major risk factor for severe comorbidities such as cardiovascular diseases or diabetes. It is also associated with an increased prevalence of emotional and cognitive alterations that in turn aggravate the disease and related outcomes. Identifying therapeutic strategies able to improve those alterations is therefore a major socioeconomical and public health challenge. We previously reported that both hippocampal inflammatory processes and neuronal plasticity contribute to the development of emotional and cognitive alterations in db/db mice, an experimental model of metabolic syndrome that displays most of the classical features of the syndrome. In that context, nutritional interventions with known impact on those neurobiological processes appear as a promising alternative to limit the development of neurobiological comorbidities of metabolic syndrome. We therefore tested here whether n-3 polyunsaturated fatty acids (n-3 PUFAs) associated with a cocktail of antioxidants can protect against the development of behavioral alterations that accompany the metabolic syndrome. Thus, this study aimed: 1) to evaluate if a diet supplemented with the plant-derived n-3 PUFA α-linolenic acid (ALA) and antioxidants (provided by n-3 PUFAs-rich rapeseed oil fortified with a mix of naturally constituting antioxidant micronutrients, including coenzyme Q10, tocopherol, and the phenolic compound canolol) improved behavioral alterations in db/db mice, and 2) to decipher the biological mechanisms underlying this behavioral effect. Although the supplemented diet did not improve anxiety-like behavior and inflammatory abnormalities, it reversed hippocampus-dependent spatial memory deficits displayed by db/db mice in a water maze task. It concomitantly changed subunit composition of glutamatergic AMPA and NMDA receptors in the hippocampus that has been shown to modulate synaptic function related to spatial memory. These data suggest that changes in local neuronal plasticity may underlie cognitive improvements in db/db mice fed the supplemented diet. The current findings might therefore provide valuable data for introducing new nutritional strategies for the treatment of behavioral complications associated with MetS.


Asunto(s)
Trastornos del Conocimiento/dietoterapia , Cognición/efectos de los fármacos , Alimentos Fortificados , Síndrome Metabólico/dietoterapia , Micronutrientes/farmacología , Aceite de Brassica napus/química , Aceite de Brassica napus/farmacología , Animales , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/fisiopatología , Modelos Animales de Enfermedad , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/fisiopatología , Ratones
15.
Nat Rev Neurosci ; 15(12): 771-85, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25387473

RESUMEN

The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.


Asunto(s)
Encefalopatías/metabolismo , Encéfalo/metabolismo , Ácidos Grasos Insaturados/fisiología , Transducción de Señal/fisiología , Animales , Encefalopatías/fisiopatología , Humanos
16.
Brain Behav Immun ; 77: 25-36, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30508579

RESUMEN

Although the high prevalence of anxiety in obesity increasingly emerges as significant risk factor for related severe health complications, the underlying pathophysiological mechanisms remain poorly understood. Considering that chronic inflammation is a key component of obesity and is well known to impact brain function and emotional behavior, we hypothesized that it may similarly contribute to the development of obesity-related anxiety. This hypothesis was experimentally tested by measuring whether chronic food restriction, a procedure known to reduce inflammation, or chronic anti-inflammatory treatment with ibuprofen improved anxiety-like behavior and concomitantly decreased peripheral and/or hippocampal inflammation characterizing a model of severe obesity, the db/db mice. In both experiments, reduced anxiety-like behaviors in the open-field and/or elevated plus-maze were selectively associated with decreased hippocampal tumor necrosis factor-α (TNF-α) mRNA expression. Highlighting the causality of both events, chronic central infusion of the TNF-α blocker etanercept was then shown to be sufficient to improve anxiety-like behavior in db/db mice. Lastly, by measuring the impact of ex-vivo etanercept on hippocampal synaptic processes underlying anxiety-like behaviors, we showed that the anxiolytic effect of central TNF-α blockade likely involved modulation of synaptic transmission within the ventral hippocampus. Altogether, these results uphold the role of brain TNF-α in mediating obesity-related anxiety and provide important clues about how it may modulate brain function and behavior. They may therefore help to introduce novel therapeutic strategies to reduce anxiety associated with inflammatory conditions.


Asunto(s)
Ansiedad/metabolismo , Obesidad/psicología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Ansiolíticos/farmacología , Trastornos de Ansiedad/metabolismo , Conducta Animal/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Etanercept/farmacología , Hipocampo/metabolismo , Inflamación/metabolismo , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Factor de Necrosis Tumoral alfa/fisiología
17.
Brain Behav Immun ; 80: 179-192, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30872090

RESUMEN

The accumulation of adverse events in utero and during childhood differentially increases the vulnerability to psychiatric diseases in men and women. Gut microbiota is highly sensitive to the early environment and has been recently hypothesized to affect brain development. However, the impact of early-life adversity on gut microbiota, notably with regards to sex differences, remains to be explored. We examined the effects of multifactorial early-life adversity on behavior and microbiota composition in C3H/HeN mice of both sexes exposed to a combination of maternal immune activation (lipopolysaccharide injection on embryonic day 17, 120 µg/kg, i.p.), maternal separation (3hr per day from postnatal day (PND)2 to PND14) and maternal unpredictable chronic mild stress. At adulthood, offspring exposed to multi-hit early adversity showed sex-specific behavioral phenotypes with males exhibiting deficits in social behavior and females showing increased anxiety in the elevated plus maze and increased compulsive behavior in the marble burying test. Early adversity also differentially regulated gene expression in the medial prefrontal cortex (mPFC) according to sex. Interestingly, several genes such as Arc, Btg2, Fosb, Egr4 or Klf2 were oppositely regulated by early adversity in males versus females. Finally, 16S-based microbiota profiling revealed sex-dependent gut dysbiosis. In males, abundance of taxa belonging to Lachnospiraceae and Porphyromonadaceae families or other unclassified Firmicutes, but also Bacteroides, Lactobacillus and Alloprevotella genera was regulated by early adversity. In females, the effects of early adversity were limited and mainly restricted to Lactobacillus and Mucispirillum genera. Our work reveals marked sex differences in a multifactorial model of early-life adversity, both on emotional behaviors and gut microbiota, suggesting that sex should systematically be considered in preclinical studies both in neurogastroenterology and psychiatric research.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/microbiología , Animales , Animales Recién Nacidos , Ansiedad/metabolismo , Conducta Animal/fisiología , Encéfalo/metabolismo , Disbiosis/metabolismo , Femenino , Masculino , Privación Materna , Ratones , Ratones Endogámicos C3H , Microbiota , Corteza Prefrontal/metabolismo , Factores Sexuales , Conducta Social
19.
PLoS Biol ; 14(5): e1002466, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27228556

RESUMEN

Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders.


Asunto(s)
Adenosina Trifosfato/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Microglía/patología , Neuronas/metabolismo , Fagocitosis/fisiología , Adulto , Animales , Apoptosis/fisiología , Receptor 1 de Quimiocinas CX3C , Humanos , Ácido Kaínico/toxicidad , Antígenos Comunes de Leucocito/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Monocitos/patología , Neuronas/patología , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA